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ABSTRACT 

 

The Utilization of Genetic Markers to Resolve Modern Management Issues in Historic 

Bison Populations: Implications for Species Conservation.  (December 2003) 

Natalie Dierschke Halbert, B. S., Texas A&M University 

Chair of Advisory Committee: Dr. James N. Derr 
 
 
 

 The saga of the American bison (Bison bison) is a well-known story of death, 

destruction, and greed circumvented by early conservationists.  The foresight of 5 

cattlemen and the Canadian and U.S. governments at the apex of the population 

bottleneck in the 1880s led to the eventual establishment of several federal bison 

populations, from which virtually all of the 300,000 extant bison are descended. 

A survey of 54 microsatellite loci spanning each autosomal and both sex 

chromosomes was used to compare levels of genetic variation among 10 of the 11 

federal bison populations in the U.S.  Although most populations contain moderate 

levels of genetic variation, the majority of genetic variation is contained within only 4 of 

the federal populations surveyed.  The distribution and partitioning of genetic variation 

confirm historical records of founding lineages and transfers among populations. 

Previously published mitochondrial and nuclear markers were used to survey 

federal bison populations for evidence of domestic cattle introgression.  While only 1 

population was found to contain low levels of domestic cattle mitochondrial DNA, 7 of 

the 10 surveyed populations had detectable introgression of nuclear genes from domestic 
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cattle.  From this, 2 federal bison populations were identified that have both high levels 

of genetic variation and no evidence of introgression of domestic cattle genes.   

 The data obtained from this study were used to examine consequences of past 

and present management practices in closed bison populations.  In the case of the Texas 

State Bison Herd, observed chronic small population size, low levels of genetic 

variation, low natality rates, and high juvenile mortality rates combined with the results 

of population modeling indicate a high risk of extinction within the next 50 years unless 

new genetic variation is introduced into the herd.  Alternatively, analysis of population 

substructure and nonrandom culling reveal the necessity for further investigation into the 

long-term effects of current management practices in the Yellowstone National Park 

bison population.  This study illustrates that while bison may be considered a 

conservation success story, long-term survival of protected federal populations requires 

the development of effective genetic management strategies.  
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CHAPTER I 

INTRODUCTION 

 

“I feel real and great interest in the work being done by the American Bison Society to 
preserve the buffalo - the biggest of the American big game, probably on the whole the 
most distinctive game animal of this Continent, and certainly the animal which played 

the greatest part in the lives of the Indians, and which most deeply impressed the 
imagination of all the old hunters and early settlers.  It would be a real misfortune to 

permit the species to become extinct, and I hope that all good citizens will aid the 
Society in its efforts for its preservation.” 

— President Theodore Roosevelt, 1907 (as quoted in Garretson 1938) 

 

Evolution of the Bison genus 

During the Illinoian glacial period of the Pleistocene epoch approximately 

500,000 – 250,000 years before present (BP), bison entered into North America via the 

Bering land bridge from northern Eurasia (Guthrie 1970; McDonald 1981).  Two 

species, Bison latifrons and B. antiquus, appear in North American fossil records during 

this time.  The larger of the two, B. latifrons, inhabited the wooded environments in the 

northern portions of the continent and became extinct during the late Wisconsin glacial 

period (75,000 – 10,000 BP; McDonald 1981; Dary 1989).  In the southwestern United 

States and Mexico, however, B. antiquus survived into the Holocene.  There is some 

debate as to whether B. antiquus or a new species, B. occidentalis, persisted after the 

large-scale species reduction triggered by environmental changes and increased human  

_______________ 

This dissertation follows the style and format of the journal Genetics. 
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hunting pressures around 11,000 – 9,500 BP (McDonald 1981; Dary 1989).  Regardless 

of the taxonomic status of bison fossils dating to this period, modern North American 

bison apparently evolved from B. antiquus, B. occidentalis, or a mix of the two species 

around 5,000 – 4,000 BP (McDonald 1981; Dary 1989; Geist 1991; Wyckoff and 

Dalquest 1997).  Modern bison are considerably smaller in horn and body size than their 

progenitors (Guthrie 1970; McDonald 1981). 

The genus Bison is represented by two extant species: B. bison (North American 

bison) and B. bonasus (European bison; McDonald 1981; Corbet and Hill 1986; Wilson 

and Reeder 1993; Burzyńska et al. 1999).  The genus is most closely related to the genus 

Bos, which includes domestic cattle (B. taurus), yak (B. grunniens), gaur (B. gaurus), 

kouprey (B. sauveli), and banteng (B. javanicus;  Miyamoto et al. 1989; Geraads 1992; 

Wall et al. 1992; Janecek et al. 1996; Ritz et al. 2000).  The Bison-Bos genera split 

occurred between 0.5 – 1.5 million years ago in Eurasia (McDonald 1981; Hartl et al. 

1988; Loftus et al. 1994; Bradley et al. 1996; Ritz et al. 2000).  Both bison species are 

capable of producing fertile offspring through hybridization with domestic cattle and 

other members of the genus Bos (Boyd 1908; Goodnight 1914; Steklenev and 

Yasinetskaya 1982; Meagher 1986).  Consequently, Simpson (1961) and van Gelder 

(1977) supported the inclusion of the genus Bison in the genus Bos, the latter pointing 

out that although “virtually all mammalogists agree verbally that ‘Bison’ and ‘Bos’ are 

congeneric,” tradition has precluded the everyday use of the inclusion.  Further support 

for the generic inclusion of Bison into Bos comes from morphological data (Groves 

1981), blood protein analysis (Stormont et al. 1961), and phylogenetic analyses of 
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mitochondrial (Burzyńska et al. 1999; Miyamoto et al. 1989; Janecek et al. 1996) and 

nuclear ribosomal DNA (Wall et al. 1992). 

The species Bison bonasus arose in Europe from B. schoetensacki during the late 

Wisconsin-early Holocene around 10,000 BP (McDonald 1981).  B. bonasus underwent 

a continual census decline coincident with habitat destruction, exposure to cattle 

diseases, and increased hunting pressures between the 1400s and early 1900s and 

culminating with the elimination of all but 12 captive European bison following World 

War II (Olech 1987; Pucek 1991; Burzyńska et al. 1999).  Not only are the descendants 

of these bison highly inbred (Olech 1987), but the source population used to stock 

European bison herds contain bison-domestic cattle hybrids as shown through historical 

(McHugh 1972) and mitochondrial DNA evidence (Ward et al. 1999).  Furthermore, the 

2 bison species are more appropriately considered conspecific, since interspecies hybrids 

are completely interfertile in both sexes (van Gelder 1977; Corbet 1978; Pucek 1991).  

 

B. bison decline 

Based on an estimate by Seton (1937) from observations of Colonel Richard 

Dodge along the Arkansas River in 1871, a common perception for many years has been 

that around 60 million bison once roamed the North American continent.  More recent 

examinations, however, have shown this number to be far inflated.  Flores (1991) used 

the 1910 USDA livestock census data and historical rainfall averages to estimate the 

North American carrying capacity at 28 – 30 million.  Similarly, McHugh (1972) 

estimated the North American carrying capacity at approximately 30 million bison based 
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on the carrying capacity and acreage of tallgrass versus short-grass prairie and 

competition with other grazers.  Roe (1970) estimated 40 million must have existed in 

1830 through analysis of documentation on the number of bison killed between 1830 and 

1854.  Regardless, it is clear from historical accounts and modern interpretation that 

bison once roamed the North American continent in the tens of millions.   

The apex of the well-known bison slaughter occurred in the mid-1800s and can 

be mostly attributed to hunting by both Indians and Europeans to supply the profitable 

bison robe trade (Garretson 1938; Roe 1970).  However, there is evidence to suggest that 

the species was in decline well before this time.  Although Native Americans had hunted 

bison for thousands of years, around 1450 human pressures on bison herds was increased 

by trade between Indian tribes (Flores 1991).  In the late 1600s, the acquisition of horses 

soon produced entire Indians cultures centered on bison hunting.  Natural forces such as 

fire, snow, and drought, predation by wolves, competition for resources with wild 

horses, and exotic bovine diseases all played a part in the 1700s and early 1800s in 

reducing the number of bison in North America (Roe 1970; Flores 1991; Zontek 1995).  

With the help of horses, Indians eliminated bison west of the Rocky Mountains by the 

early 1800s (Christman 1971), while European settlers exterminated bison east of the 

Mississippi River by 1820 (Garretson 1938).  By 1800, bison on the southern plains 

were so scarce that Comanche Indians were literally starving to death (Flores 1991).  In 

the central plains of the U.S. and in Canada, however, it was severe hunting between 

1830 and 1880 that caused the nearly complete extinction of the bison species (Garretson 

1938; Roe 1970).     
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Although exact figures are obscure, bison reached a minimum of a few hundred 

individuals in the late 1800s.  Seton (1937) estimated the minimum reached in 1895 of 

around 800 bison in North America.  The famous naturalist William Hornaday (1913) 

estimated a maximum of 1,300 bison existing in 1888 – 1889, including wild and captive 

bison in the United States and Canada (Hornaday 1913).  Coder (1975) estimated that at 

the lowest point in 1888, there were only 541 bison in existence in the United States and 

only around 85 alive in the wild in Montana, the Dakota Territory, Wyoming, Colorado, 

and Texas.  Of these 85 wild bison, all except a small herd in Wyoming were completely 

hunted out of existence.  When it became evident that bison were on their way to 

extinction in the 1880s, a small number of individuals effectively served to save the 

species through the recovery efforts summarized below. 

 

The recovery of North American bison 

McKay-Alloway Herd  

James McKay and Charles Alloway were business partners, who actively 

participated in annual bison hunts with the Metis Indians in Saskatchewan.  By the 1872 

Red River hunt, bison were quite scarce, and the pair decided to establish a small herd 

with some of the few remaining wild bison.  In 1873 - 1874, a total of 4 female and 1 

male calves were captured and used to establish the McKay-Alloway herd (Coder 1975).  

Following the death of McKay in 1880, Colonel Samuel L. Bedson purchased 8 of the 

bison and added 3 wild calves to the small herd.  Of the remaining McKay-Alloway 

herd, 13 were purchased and given to the Canadian (Dominion) government.  The 13 
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bison joined 3 existing bison in the establishment of Banff Park in Alberta, and 2 

females and 1 male from the Goodnight herd in Texas were later added (Coder 1975).   

 

Goodnight Herd 

 At the behest of his wife, Charles Goodnight began his famous bison venture in 

the panhandle of Texas with the capture of 1 male and 1 female calf in 1878 (Haley 

1949).  Five additional calves were later obtained, but of the 7 total, one was killed and 

one sold, thus establishing the Goodnight herd with 5 wild bison (Haley 1949; Coder 

1975).  The herd grew and prospered; by 1887 there were 13 bison and by 1910, the 

number had increased to 125 (Dary 1989).  The Goodnight herd increased to 200 – 250 

bison for several years in the 1920s (Haley 1949).  Following Goodnight’s death in 

1929, the ownership of the herd changed several times and reliable estimates of 

population size are unavailable.  By the 1970s the population was estimated at 40 – 100 

bison (Danny Swepston, pers. comm.).  In 1997, the remaining 36 bison were donated to 

Texas Parks and Wildlife and moved to Caprock Canyons State Park in the Texas 

panhandle (Texas State Bison Herd: TSBH).  Over the last 120 years this population has 

remained reproductively isolated, therefore representing the only extant bison population 

directly descended from the original Charles Goodnight herd. 
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Dupree-Philip Herd 

  Frederick Dupree, a cattle rancher from South Dakota, captured bison in 

Montana in 1882 after observing the rapid disappearance of bison on the plains.  About 9 

calves were captured, though 2 or 3 died shortly after arriving at the Dupree ranch 

(Coder 1975).  Dupree died in 1898 and his entire operation of 85 bison was purchased 

by James “Scotty” Philip in 1901 (Coder 1975; Zontek 1995).  In 1914, 36 bison from 

the Philip herd were used to found the Custer State Park (CSP) population in South 

Dakota (Garretson 1938). 

 

Jones Herd 

 Charles “Buffalo” Jones profited enormously on the Great Plains during the mid-

1800s from hunting bison to supply the demand for hides.  Once moderately wealthy, he 

used his influence to help save the species from extermination.  In 1886 he traveled to 

Palo Duro Canyon and captured 14 calves from a remnant population of southern plains 

bison, only 10 of which survived the trip back to Garden City, Kansas.  From 1887 – 

1889, a total of 46 bison were added to the herd in the same fashion (Coder 1975).  

Later, purchases of the entire Bedson herd of 86 bison from Canada (McKay-Alloway 

origin) and 10 adult bison from various owners in Kansas and Nebraska were used to 

supplement the Jones herd (Garretson 1938; Coder 1975).     
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Pablo-Allard Herd 

 After creating trouble for himself by taking two wives from two different Indian 

tribes at the same time, Samuel “Walking Coyote” Wells captured 3 male and 4 female 

calves in 1879 in Montana to present to his Pend d’Oreille tribe as a peace offering 

(Coder 1975).  Wells arrived at Flathead Valley with 2 male and 2 female calves, which 

were used to start a small herd.  Charles Allard, Sr. and his interpreter Michael Pablo 

bought the entire herd of 12 bison from Wells in 1883, thus forming the Pablo-Allard 

bison herd (Coder 1975; Zontek 1995).  In 1893, Pablo and Allard purchased 44 bison 

from Charles Jones to supplement their herd (Seton 1937).  By 1906, the herd was 

estimated at 350 bison.  

 

National Zoological Park Herd 

In the late 1800s another important captive bison herd was founded at the 

National Zoological Park in Washington, DC as follows: 1888 – 1 male, 1 female from 

Nebraska; 1889 – 3 males, 1 female from South Dakota; 1897 – 1 male, 2 females from 

Pablo-Allard herd; 1904 – 4 females, 3 of which were from the Austin Corbin herd in 

New Hampshire which originated from a mixture of bison from Wyoming, Manitoba, 

and Charles Jones’ herd (Coder 1975).  William Hornaday personally saw to the 

collection of the bison and establishment of the National Zoological Park herd, which 

would later serve to help create the Wichita Mountains National Wildlife Refuge and 

Wind Cave National Park populations (see below).   
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Bison bison in the 20th century 

Although several hundred bison existed at the population bottleneck apex in the 

late 1800s, nearly all bison that exist today are descendants of the 76 – 84 bison used to 

found the aforementioned 5 private herds in the late 1800s and a remnant wild 

population in Yellowstone National Park of no more than 30 bison (Garretson 1938; 

Meagher 1973; Coder 1975).  From these few bison, and under the protection of both the 

U.S. and Canadian governments, the worldwide bison census quickly grew as follows: 

1910 – over 2,000 bison; 1920 – over 8,000 bison; 1933 – over 21,000 bison (Hornaday 

1913; Seton 1937; Garretson 1938; Coder 1975).  As the established federal bison 

populations grew, excess bison were killed, used to establish new federal populations, or 

sold in public auctions.  The bison story has now come full-circle, as the majority of the 

300,000 North American bison in existence today are privately owned and have histories 

tracing back to a few public bison populations, founded from a limited number of bison 

secured primarily by 5 private ranchers in the late 1800s.  

 

Taxonomic status of B. bison   

The species B. bison is currently represented by two subspecies which 

presumably differ in physical size and coat characteristics: wood bison (B. b. athabascae 

Rhoads) and plains bison (B. b. bison L; Hall 1981; McDonald 1981; Meagher 1986).  

Limited support for the division of these two races comes from differences in phenotypic 

variation (van Zyll de Jong et al. 1995).  Following exploitation in a manner similar to 

that experienced by the plains bison, in 1891 an estimated 300 wood bison representing 
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the only remnant of the subspecies were in the area now belonging to Wood Buffalo 

National Park (WBNP) in Canada (Banfield and Novakowski 1960).  Under protection 

by the Canadian government, the population had increased to 1,500 – 2,000 bison by 

1922.  Despite this rapid population growth and over the protests of Canadian scientists 

(Seton 1937; McHugh 1972), over 6,600 plains bison of Pablo-Allard herd origin were 

moved into WBNP from 1925 - 1928 (Banfield and Novakowski 1960; Roe 1970).  

Reports indicate that the plains bison freely roamed and bred with the native wood bison 

(van Camp 1989; Geist 1991).  A presumed pure sub-population of wood bison 

(Banfield and Novakowski 1960) was used to establish populations at Mackenzie Bison 

Sanctuary (18 bison; MBS) and Elk Island National Park (24 bison; EINP) in Canada in 

1963 and 1965, respectively (Geist 1991).  

The subspecific status of wood bison has been a contentious issue.  Under the 

currently accepted taxonomic definition, the wood bison populations receive protection 

and funding from the Canadian government.  However, Burton (1962), Corbet (1978), 

van Gelder (1977), and Wilson and Reeder (1993) all considered the subspecific status 

of the wood bison invalid.  Geist (1991) noted that the generally accepted phenotypic 

differences between wood and plains bison are the effects of environmental and not 

genetic influence.  Wood and plains bison have identical chromosome numbers (2n) with 

the same G-banding patterns (Ying and Peden 1977).  Blood group typing does not 

support subspecific status, indicating more variation within plains bison than between 

plains and wood bison populations and high similarity between presumably pure wood 

bison from EINP and both hybrid wood-plains bison from WBNP and pure plains bison 
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from EINP (Peden and Kraay 1979).  Analysis of nuclear restriction fragment length 

polymorphisms indicated significantly different allele frequencies between wood and 

plains bison from EINP, although unique wood bison alleles were not found (Bork et al. 

1991).  The significance of the noted differences between wood and plains bison, 

however, is unknown since differences in allele frequencies were not established among 

plains bison populations. 

More recently, microsatellite DNA analysis has been used to compare allelic 

distribution and genetic distance between wood bison from EINP, MBS, and WBNP 

with plains bison populations (Wilson and Strobeck 1999).  After finding no alleles 

private to the wood bison populations and observing limited genetic differences between 

the presumed subspecies, Wilson and Strobeck (1999) concluded that all wood bison 

populations have some admixture of plains bison germplasm.  Polziehn et al. (1996) and 

Ward et al. (1999) showed through phylogenetic analysis of mitochondrial DNA that 

that each of the Canadian wood bison populations (EINP, MBS, WBNP) contain 

mitochondrial haplotypes shared with plains bison populations and that the haplotypes 

unique to wood bison populations are not phylogenetically distinct from other bison 

haplotypes.  Given these lines of evidence, it appears that wood and plains bison are not 

distinct enough to be considered subspecies.  However, the history of the northern wood 

bison during and after the species bottleneck in the late 1800s makes the Canadian 

populations a potentially important source of bison genetic diversity. 

Krumbiegel and Sehm (1989) used evidence of phenotypic variation and former 

range to further split the plains bison into two subspecies: southern plains bison (Bison 
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bison bison Linnaeus) and northern plains bison (Bison bison montanae Krumbiegel).  

The division, however, is tenuous and based mostly on analysis of pre-1900 illustrations.  

Charles Goodnight observed phenotypic differences between the northern and southern 

plains herds, stating “…while they are no doubt the same species, there is enough 

difference in the two for any judge of animals to observe it at once…” 

 (Haley 1949).  Even if such subspecies at one time did exist, they have been 

undoubtedly crossbred in the past 100 years (McHugh 1972; Coder 1975; Dary 1989), so 

that the only known true remnant of the southern plains bison is contained in the TSBH. 

 

Previous B. bison genetic investigations 

Previous B. bison genetic work includes blood group serology (Stormont et al. 

1961; Sartore et al. 1969), protein electrophoresis (McClenaghan et al. 1990), 

mitochondrial DNA sequence (Polziehn et al. 1995; Ward et al. 1999), nuclear 

restriction fragment length polymorphism (Bork et al. 1991), and nuclear microsatellite 

analyses (Mommens et al. 1998; Wilson and Strobeck 1999; Schnabel et al. 2000).  Only 

Wilson and Strobeck (1999) attempted to measure the amount of genetic variation within 

and among populations, with the specific focus of comparing wood and plains bison 

populations.  However, Wilson and Strobeck (1999) included only 4 of the 11 U.S. 

federal bison populations in their study, which was limited in both the number of loci 

(11) and number of samples utilized from each population. 
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Hybridization of bison and domestic cattle 

As early as 1873, Charles Goodnight produced hybrids between bison and cattle 

(Dary 1989).  By breeding his bison bulls to Polled Angus cows, he sought to produce a 

hearty beef breed (Goodnight 1914; Haley 1949).  By 1917, Goodnight had become 

internationally famous for his “cattelo” operations, having produced around 40 head of 

such hybrids that seemed resistant to disease, required less feed, and could produce 

calves for more years than pure Angus (Haley 1949).  Charles Jones had similar success 

in producing and utilizing domestic cattle-bison hybrids, and believed that the cattelo 

should replace domestic cattle beef breeds (Jones 1907; McHugh 1972).  In fact, all of 

the ranchers involved in establishing the 5 foundation herds either experimented with 

domestic cattle-bison crosses or purchased bison from others who were involved in such 

experiments (Garretson 1938; Coder 1975).  For instance, McKay and Alloway actively 

crossbred their bison to domestic cattle, as did Samuel Bedson after purchasing some of 

the McKay-Alloway bison (Coder 1975).  Jones later bought the Bedson herd and 

performed interspecies crosses himself (Garretson 1938).  

Both mitochondrial DNA (Polziehn et al. 1995; Ward et al. 1999) and nuclear 

DNA (Ward 2000) analyses have revealed evidence of domestic cattle introgression in 

bison.  Domestic cattle introgression has been detected in several public bison 

populations and all except 1 of the more than 50 private bison herds examined to date 

(James Derr unpublished data).  As such, it has become increasingly important for the 

long-term preservation of a pure bison species to identify those populations with no 

evidence of domestic cattle introgression. 
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Study objectives 

A comprehensive survey and analysis of genetic variation within and among U.S. 

federal bison populations, which are collectively an important resource of bison 

germplasm, is necessary to provide baseline genetic information from which future 

management decisions can be established.  Although all 11 of the U.S. federal bison 

populations operate under the guidelines of the Department of the Interior, each herd is 

managed independently such that decisions ranging from the choice of supplemental 

feeding to the type of culling employed are ultimately the responsibility of individual 

park/refuge mangers.  Very little theoretical and almost no applied information is known 

about the genetic impact of various management decisions on long-term levels of genetic 

variation and survivability in these bison populations. 

The objectives of this study were to examine the levels and distribution of 

nuclear DNA variation within and among federal bison populations, to investigate the 

effects of various culling practices on genetic variation, and to use previously established 

technologies to survey detectable levels of introgression of domestic cattle mitochondrial 

and nuclear genes in these populations.  Detailed knowledge of current levels of genetic 

variation and domestic cattle introgression will serve as the basis, in part, for future 

management decisions regarding federal bison populations and will likely have a direct 

impact on the long-term preservation of the species.  
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Federal bison populations: history, management status, and previous genetic work 

Population abbreviations, locations, and summary of founding stock are shown in 

Table 1. 

 

Badlands National Park 

 In 1963, 50 bison from TR and 3 from FN were used to found the BNP bison 

population (McClenaghan et al. 1990).  Additionally, 20 bison from the Colorado 

National Monument herd were used to supplement genetic diversity in the BNP 

population in 1983, all of which were descended from 2 females and 1 male from the 

Denver area in 1925 (Berger and Cunningham 1994).  The annual growth rate is 

estimated at 15 – 18%, and bison are culled opportunistically and proportionately with 

respect to age and sex when the population exceeds the conservative carrying capacity of 

600 animals (William Supernaugh pers. comm.).  McClenaghan et al. (1990) reported 

low levels of genetic variation in the BNP bison population based on protein 

electrophoresis data, and attributed this finding to inbreeding.  This population has not 

been previously examined for evidence of domestic cattle introgression. 

 

Fort Niobrara National Wildlife Refuge 

 Originally established as a bird reservation in 1912, the FN bison herd was 

founded with a gift of 6 bison from a private rancher in Nebraska and 2 bulls from YNP 

in 1913 (Garretson 1938; Coder 1975).  Additional introductions were made to minimize 

inbreeding and maintain genetic diversity as follows: 4 bulls from CSP in 1935; 4 bulls 
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TABLE 1 

National Park (NP) and National Wildlife Refuge (NWR) bison populations 

Herd 
(Abbreviation) Location Founding Stock 

Year        Number – Source 
Badlands NP 

(BNP) South Dakota 1963 3 – Fort Niobrara NWR; 50 – Theodore Roosevelt NP (TRS) 
1983        20 – Colorado National Monument (unknown origin) 

Fort Niobrara NWR 
(FN) Nebraska 

1913 6 – private ranch, Nebraska; 2 – Yellowstone NP 
1935 4 – Custer State Park 
1937       4 – Custer State Park 
1952        5 – National Bison Range 

Grand Teton NP 
(GT) Wyoming 1948 20 – Yellowstone NP 

1964        12 – Theodore Roosevelt NP 

National Bison Range 
(NBR) Montana 

1908 1 – Goodnight herd; 3 – Corbin (McKay-Alloway); 34 – Conrad (Pablo-Allard) 
1939        2 – 7-Up Ranch (unknown origin) 
1952 4 – Fort Niobrara NWR 
1953 2 – Yellowstone NP 
1984        4 – Maxwell State Game Refuge (Jones) 

Neal Smith NWR 
(NS) Iowa 

1996 8 – Fort Niobrara NWR; 8 – Wichita Mountains NWR 
1997 6 – Fort Niobrara NWR; 8 – National Bison Range 
1998        3 – Fort Niobrara NWR 

Sully’s Hill National  
Game Preserve (SH) North Dakota 1919        6 – Portland City Park, Oregon (unknown origin) 

Theodore Roosevelt NP 
(TR) North Dakota 1956 29 – Fort Niobrara NWR to found TRS (south unit) 

[1962]    [20 – TR-S bison to found TRN (North unit)] 
Wichita Mountains NWR 

(WM) Oklahoma 1907       15 – New York Zoological Park 
1940        2 – Fort Niobrara NWR 

Wind Cave NP 
(WC) South Dakota 1913 14 – New York Zoological Park 

1916        6 – Yellowstone NP 

Yellowstone NP 
(YNP) 

Wyoming, 
Idaho, 

Montana 
1902 < 30 wild; 18 – Pablo-Allard herd; 3 – Goodnight herd 
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from CSP in 1937; 5 bulls from NBR in 1952.  The herd is managed in a controlled 

grazing program by rotation through fenced units periodically throughout the year.  The 

population has grown from less than 200 from 1940 – 1964 to around 200 – 300 from 

1965 – 1985 to current estimates of approximately 350 bison, with recent natural 

mortality rates averaging < 2.0%/year.  The sex ratio is approximately 1:1 in the younger 

age classes and the average calving rate for 3 year-old and older females is 83%.  Bison 

are culled through public auctions and donations to remove surplus and maintain the 

carrying capacity of around 350 bison.  From the 1970s through the mid-1990s, weight, 

appearance, and health factors were used to make culling decisions in the calf and 

yearling age classes, which were reduced by approximately 50% each year (Royce 

Huber pers. comm.).  Criteria for culling older age classes included general health, 

condition, and reproductive success in females based on calf production.  The culling 

strategy has become more randomized in the past few years.  FN calves receive 

vaccinations for hemorrhagic septicemia, blackleg, and malignant edema and the entire 

population has been disease-free for over 30 years. 

 Wilson and Strobeck (1999) found levels of genetic variation (average 4.64 

alleles/locus) and heterozygosity (average 57.2%) for 11 microsatellite markers across 

30 bison samples from FN, which is comparable to that found in other public bison 

herds.  Overall, FN ranked 6th for the average number of alleles/locus and 10th for the 

average heterozygosity out of 11 populations studied (rank of 11th being the highest; 

Wilson and Strobeck 1999).  Polziehn et al. (1995) and Ward et al. (1999) both found a 

single bison mitochondrial haplotype in FN bison and no evidence of domestic cattle 
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mitochondrial DNA introgression.  Ward (2000) found 11/27 (40.7%) of the FN bison 

sampled had evidence of domestic cattle introgression at 3 linked markers on 

chromosome 1.       

   

Grand Teton National Park 

In 1948, 20 bison (3 bulls, 12 cows, 5 calves) were moved from YNP to Jackson 

Hole Wildlife Park near Moran, Wyoming (McHugh 1958; National Park Service (NPS) 

1996).  A population of 15 – 30 bison was maintained in a large enclosure until 1963 

when brucellosis was discovered in the herd, at which time all 13 adults were destroyed 

and 4 yearlings and 5 calves were vaccinated and retained.  In 1964, 12 brucellosis-free 

adult bison (6 male, 6 female) were added to the population from TR, but by 1968 the 

population was down to 15 or 16 bison (NPS 1996).  After becoming free-ranging in 

1969, the population began to expand and migrate between GT in the summer and the 

adjacent National Elk Refuge in the winter.  There are currently approximately 600 

bison in the GT population. 

GT bison receive supplemental feed in the winter on the National Elk Refuge.  

Bison that escape the confines of the park onto private lands are usually culled.  The 

only recent large reduction in population size was the removal of 37 animals from 1988 

– 1990 when the population census size was just over 100 (around a 30 – 35% reduction; 

NPS 1996).  The herd suffers from brucellosis, and public concerns over the threat of 

transmission of the disease to livestock on adjoining private lands heavily influence 
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management of the GT bison herd.  No prior studies of genetic variation or introgression 

of domestic cattle DNA have been performed on GT bison.   

 

National Bison Range 

 Through the work of the American Bison Society, 12 male and 22 female bison 

from the Conrad herd in Kalispell, Montana were used to establish the Montana NBR 

herd in 1908 (Garretson 1938; Coder 1975).  These bison originated from 30 bison 

bought from the Pablo-Allard herd in 1902 (Coder 1975).  Additions were made in 1908 

of 1 male and 2 females from the Corbin herd of McKay-Alloway origin and 1 male 

from the Goodnight herd (Garretson 1938).  By 1924 the census size had grown to 

approximately 700 and annual reductions began with the removal of 197 bison (David 

Wiseman pers. comm.).  In 1928, 23 surplus bison were shipped to Alaska, 19 of which 

were used to found a herd near Fairbanks (Delta Junction Herd; Garretson 1938; Coder 

1975).  The NBR bison population has been supplemented 4 times since its inception: in 

1939 with 2 males from the 7-Up ranch (origin unknown), in 1952 with 4 males from 

FN, in 1953 with 2 males from YNP, and in 1984 with 4 females from Maxwell State 

Game Refuge (MSGR) in Kansas (David Wiseman pers. comm.).   

 Current management policy includes rotational grazing of the entire herd through 

a cross-fencing system, maintenance of a 60% female adult population as an 

approximation of natural conditions in large bison herds, and removal of animals to 

maintain a total census size of 370 – 400 bison (David Wiseman pers. comm.).  Bison 

are removed from NBR through annual round-ups, donation to tribes, and public 
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auctions through random selection within identified age and sex classes.  The bison 

population has been tested and certified as brucellosis-free since 1952.  Johne’s disease 

has recently been indicated through either laboratory testing or necropsy evaluation in 5 

bison from NBR (2 confirmed cases; Lindy Garner and Thomas Roffe pers. comm.).  

The source of the disease is unknown and the incidence is believed to be increasing at 

this point.  

 Wilson and Strobeck (1999) included 30 bison from NBR in their microsatellite 

study, where they found an average of 4.91 alleles/locus and 54.4% heterozygosity, 

ranking NBR 7th out of the 11 populations studied in both of these measures.  Through 

mitochondrial DNA restriction analysis of 22 bison from NBR, Polziehn et al. (1995) 

found 2 types of bison mitochondrial DNA.  A more in-depth mitochondrial sequencing 

survey and subsequent screening of 113 bison from NBR revealed 3 bison haplotypes 

and 1 domestic cattle haplotype (Ward et al. 1999).  The most likely source of the 

domestic cattle mitochondrial introgression was determined to be MSGR (from the 1984 

introduction of 4 females), as the domestic cattle haplotype was shared with another 

bison population with origins from MSGR (Ward et al. 1999).  Ward (2000) also found 

3 linked markers on the telomeric end of chromosome 1 that each demonstrated possible 

nuclear domestic cattle introgression in 6/38 (15.8%) bison sampled from NBR.     

 

Neal Smith National Wildlife Refuge 

 The NS bison population is the most recently established of the federal herds, 

formed as mixture of stock from various herds as follows: 1996 – 8 from FN, 8 from 
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WM; 1997 – 6 from FN, 8 from NBR; 1998 – 3 from FN.  The population was reduced 

from a maximum of 70 to 35 bison in 2001 and has since been maintained at the current 

carrying capacity of 35 based on the existing 700-acre enclosure (Nancy Gilbertson pers. 

comm.).  Brucellosis has not been detected in the NS bison population.  No documented 

studies of genetic variation or domestic cattle introgression have been conducted in the 

NS bison population, although some deductions can be made from previous studies on 

the source populations. 

 

Sully’s Hill National Game Preserve 

 Sully’s Hill National Park was established in 1904 and in 1931 was transferred to 

the National Wildlife Refuge System as a national game preserve.  In 1919, the bison 

herd at SH was established with 6 bison from the Portland City Zoo in Oregon (Coder 

1975).  The origin of these bison is unknown.  The herd is maintained at 30 – 40 bison 

and used mostly for exhibition purposes.  No previous genetic work is known from the 

SH population. 

 

Theodore Roosevelt National Park 

 Theodore Roosevelt National Monument was established in North Dakota in 

1947 and became an official national park in 1978.  In 1956, 29 bison from FN were 

used as founding stock for the south unit bison population (TRS).  The north unit (TRN) 

population, located approximately 40 miles from the south unit, was subsequently 

founded from 20 TRS bison in 1962 (Michael Oehler pers. comm.).  The census 
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population sizes are approximately 320 (TRS) and 310 (TRN) bison based on surveys 

and round-ups in 2002 and 2001, respectively.  Extensive roundups are conducted within 

each unit every 2 – 3 years, and excess animals are transferred to tribal groups.  Culling 

decisions are based on targeted overall herd size, a 2 female:1 male adult sex ratio, and 

maintenance of age class proportions with an upper cull limit of 60% for any given age 

class (Michael Oehler pers. comm.).  Based on extensive testing since their foundation, 

the populations are thought to be free of brucellosis and other known bovid diseases, and 

studies of genetic variation and examination of domestic cattle introgression have not 

been previously undertaken on these populations. 

 

Wichita Mountains National Wildlife Refuge 

 The second of the federal bison herds to be established was in Oklahoma on the 

Wichita Forest and Game Preserve, founded in 1905 (later to become Wichita Mountains 

National Wildlife Refuge).  In 1907, William Hornaday selected 6 males and 9 females 

from the New York Zoological Park used to establish the WM bison population 

(Garretson 1938; Mitchell 1993).  The 15 animals were believed by Hornaday to 

represent 5 bison blood lines.  Several of the females had origins from a private herd in 

Jackson, Wyoming, some came from a private herd in Maine, and one bull was from the 

Jones herd (Coder 1975).  By 1917 there were 92 bison and by 1923 the herd had grown 

to 147 bison (Mitchell 1993).  In 1940, 2 bulls from FN were used to supplement the 

herd (Joe Kimball pers. comm.).       
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 The WM bison population is maintained in 3 subherds on large fenced pastures.  

Yearlings are moved between pastures annually to maintain overall genetic diversity.  

The current WM census population size is approximately 575, with excess bison culled 

annually through round-ups, donations to tribal organizations, and public auctions (Joe 

Kimball pers. comm.).  Wilson and Strobeck (1999) included 21 bison from WM in their 

microsatellite study, where they found an average of 3.91 alleles/locus and 47.4% 

heterozygosity, ranking WM 3rd out of the 11 populations studied in both of these 

measures (the lowest ranking of the 4 U.S. federal populations examined).  Polziehn et 

al. (1995) examined 20 WM bison and found 2 bison mitochondrial haplotypes and no 

evidence of domestic cattle mitochondrial introgression.     

 

Wind Cave National Park 

 The WC bison population originated in 1913 with 6 male and 8 female bison 

donated by the New York Zoological Society through the efforts of the American Bison 

Society (Coder 1975; Mitchell 1993).  In 1916, 6 bison were added to the small herd 

from YNP.  The culling practices to remove excess WC bison have changed 

dramatically over the history of the herd.  In the 1930s and 1940s, old and/or sickly 

bison were selectively removed from the population while in the 1950s, excess bison 

were purposely baited into neighboring CSP.  When the incidence of brucellosis became 

widespread (60 – 75%) in the 1950s and 1960s, the management practices were shifted 

to focus on brucellosis eradication.  In 1964, 220 of the 440 bison at WC were shot in 

the field (50% reduction), and in 1979 the herd was again reduced through round-up and 
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slaughter from approximately 547 to 353 bison (35% reduction).  In 1982, the park was 

placed under quarantine by the State of South Dakota, due to brucellosis in the herd.  

Brucellosis continued to drive the culling of the herd until 1985 when the disease was 

eliminated.  In 1986, the WC bison population was released from quarantine by South 

Dakota and no animals have tested positive for brucellosis antibodies since (Barbara 

Muenchau pers. comm.).   

In an attempt to maintain a 50:50 sex ratio in the younger age classes, annual 

roundups are conducted and yearling bison are culled from the WC population.  Ten 

yearling bison of each sex are withheld in the park, producing a herd representative of all 

age classes (Barbara Muenchau pers. comm.).  Excess bison are typically transferred to 

various American Indian tribes.  Ward et al. (1999) examined 37 WC bison and found a 

single bison mitochondrial haplotype and no evidence of domestic cattle mitochondrial 

introgression.              

  

 Yellowstone National Park 

 The first federal park in the world, YNP was founded in 1872.  From 1872 – 

1886, wild bison in YNP were poached rigorously and without consequence due to 

inadequate management and funding for law enforcement.  At the lowest point in 1902, 

there were no more than 30 bison remaining in the wild in YNP (Garretson 1938; 

Meagher 1973).  In the same year, Charles “Buffalo” Jones was appointed by President 

Roosevelt to act as game warden in the preservation of bison in YNP and played an 

integral role in the building of corrals and supervising the purchase of additional plains 
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bison to supplement the YNP population (Coder 1975).  Introductions of 18 female 

bison from the Pablo-Allard herd in Montana and 3 bulls from the Goodnight herd in 

Texas were made in 1902 (Garretson 1938; Coder 1975).  These 21 bison were 

originally fenced and treated as captive.  One of the Goodnight bulls died in the first 

winter and thus made very little, if any, genetic contribution to the captive herd 

(Garretson 1938).  After the first year, the herd had increased by 12 head (Coder 1975).  

A few additions of some “wild” YNP bison were made to the captive herd (Garretson 

1938), which continued to increase in numbers until 1915 when the herd was released 

into the park, eventually intermingling with the growing wild bison population (Meagher 

1973). 

 The YNP bison population is the most thoroughly studied and arguably the most 

well-known of all public bison herds in North America; it is also at the center of a 

significant political controversy.  In the late 1800s and early 1900s, the management 

priority for YNP bison was the protection from hunters and near-extinction.  As the 

population increased, ungulate carrying capacity became the new management priority.  

For instance, in the northeast section of the park in the Lamar Valley, the bison 

subpopulation numbered over 1,000 from 1929 – 1932 but was reduced to 143 bison by 

1952 through frequent reductions (Meagher 1973).  In 1954 there were around 1,477 

bison total in YNP, and further reductions for purposes of meeting the carrying capacity 

of the land were made until in 1967 there were only around 397 bison in the entire park 

(Meagher 1973).   
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After 1967, the park adopted a policy of noninterference whereby bison 

populations were mostly left to their own devices without supplemental feed or direct 

management.  By the 1980s bison began migrating beyond YNP boundaries in 

significant numbers due to competition for natural resources, especially during severe 

winters when the overall bison population exceeds 3,000 (Cheville et al. 1998).  The 

possibility of transmission of brucellosis to livestock on adjacent private lands has 

confounded this issue and led to intense political and scientific deliberations concerning 

the management of this historically valuable bison population.   

Wilson and Strobeck (1999) included 33 bison from YNP in their microsatellite 

study, where they found an average of 5.36 alleles/locus and 54.2% heterozygosity, 

ranking YNP 9th and 6th, respectively, out of the 11 populations studied.  With a 

combined analysis of 47 bison, both Polziehn et al. (1995) and Ward et al. (1999) found 

2 bison mitochondrial haplotypes and no evidence of domestic cattle mitochondrial 

introgression.  Ward (2000) did not find evidence of domestic cattle nuclear 

introgression in 28 YNP bison with his study of 100 microsatellites. 
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CHAPTER II 

AN EXAMINATION OF GENETIC VARIATION IN U. S. FEDERAL BISON 

POPULATIONS 

 

 “The efforts of man to atone for the great bison slaughter by preserving the species from 
extinction have been crowned with success.” 

— William T. Hornaday 1913 

 

Introduction 

In the field of conservation genetics, one rarely has the opportunity to examine 

the recovery of a species from near extinction.  North American bison not only sustained 

a well-documented population bottleneck, but also recovered seemingly well through a 

series of founder events.  The lineage of nearly all extant bison in both public and private 

herds can be traced back to less than 100 bison maintained in 5 private herds in the late 

1800s (Coder 1975).   

Today there are approximately 300,000 bison in North America, most of which 

are privately owned.  The U.S. National Park Service maintains less than 7,000 bison in 

five herds: BNP ~700 bison, GT ~600 bison, TR ~630 bison in 2 units, WC ~350 bison, 

and YNP ~2,500 – 3,000 bison.  There are less than 1,600 additional bison maintained in 

five U.S. Fish and Wildlife Service herds: FN ~ 350 bison, NBR ~350 bison, NS ~60 

bison, SH ~30 bison, and WM ~600 bison.  The vast majority of other public and most 

private bison herds are derived from these federal bison populations (with the noted 

exception of Canadian public bison herds, see Chapter I).  Additional publicly 
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maintained bison are found in various state herds, several public zoos, and a few bison 

sanctuaries.  Public and private bison populations are highly fragmented with artificially 

regulated gene flow.  Unlike public populations, private bison herds are often managed 

specifically for such traits as growth rate and meat production and many have known 

bison-domestic cattle hybrids.  As such, the long-term maintenance of bison genetic 

variation depends on the practices invoked by managers of federal bison herds. 

There is a limited amount of blood group (McClenaghan et al. 1990), 

mitochondrial sequence (Polziehn et al. 1995; Ward et al. 1999), and microsatellite 

DNA (Wilson and Strobeck 1999; Schnabel et al. 2000) information on some of the 

federal bison herds.  The aforementioned studies neither include information from all of 

these herds nor address management issues within each herd.  A comparative study of 

genetic variation within and among federal bison populations will be central in 

examining effects of various management strategies on the long-term survivability and 

genetic variation of these herds.  

Neutral, unlinked genetic markers are the preferred choice for analyses of 

population-level genetic variation.  The neutrality (or near-neutrality) of such markers is 

vital, since selection on non-neutral genetic loci acts to skew allelic distributions and 

therefore severely complicate analyses and validity of conclusions.  It is furthermore 

necessary to choose genetic loci not closely linked so as to simplify analyses and provide 

the most thorough representation of the genome under investigation.  Several types of 

genetic loci meet these qualifications, but the two most popular are single nucleotide 

polymorphisms (SNPs) and microsatellites.  Although SNPs have the advantage of being 
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more frequent across genomes (approximately 1/1,000 bp in humans), they have an 

upper limit of only 2 alleles/locus (A/T or G/C).  Microsatellites, although less frequent 

(approximately 1/20,000 – 1/40,000 bp in humans), have the advantage of many more 

possible alleles for any given locus. 

Microsatellites are known to cross-amplify in closely related species due to 

conservation of unique sequence regions flanking the repeat (Moore et al. 1991).  The 

bovine linkage map (Fries et al. 1993; Bishop et al. 1994; Kappes et al. 1997) has 

provided a multitude of microsatellite markers for cattle, many of which have proven to 

co-amplify in bison (Mommens et al. 1998; Wilson and Strobeck 1999; Schnabel et al. 

2000).  Fluorescent dye labeled microsatellite loci can be co-amplified and genotyped 

simultaneously through multiplexed polymerase chain reaction (PCR) and high-

throughput fluorescent fragment detection systems.  Development of a panel of 

multiplexed polymorphic microsatellite markers across the entire bison genome will not 

only give a better understanding of the genetic structure of extant federal bison herds, 

but will also serve as a tool for evaluating the consequences of current management 

techniques. 

 

Materials and methods 

Sample collection and DNA extraction 

 Liver, whole blood, and/or tail hair samples were collected from 10 of the 11 

federal bison herds from the period of 1997 – 2002, the only exception being the small 

exhibition herd maintained at SH.  Additionally, the entire population of 40 bison from 
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the TSBH was sampled in December 2001 and included in this analysis.  Collections 

were made and kindly provided by herd managers, biologists, and veterinarians. 

 For the extraction of DNA from liver samples, approximately 0.5 g frozen liver 

was pulverized in liquid nitrogen with a mortar and pestle.  Tissue lysis buffer consisting 

of 1× STE (100 mM NaCl, 10 mM Tris, 1 mM EDTA), 2% SDS, and 4 mg/ml 

Proteinase K was added to the powdered tissue and incubated overnight at 55°C in a 

water bath.  The tissue was treated with 10 µg RNAse-A and standard Phenol-

Chloroform-Isoamyl Alcohol (PCI) extraction was performed (Sambrook et al. 1989).   

 DNA from whole blood samples was isolated following the Super Quik-Gene 

protocol (AGTC, Denver, Colorado) and standard PCI as above or through the 

application of 1 – 2 ml whole blood onto FTA cards (Whatman, Newton Center, 

Massachusetts).  DNA was extracted from hair samples as follows: cut 15 – 20 hair 

follicles from the hair shafts; place in 200 µl of buffer (400 mM KCl; 100 mM Tris; 

0.45% TritonX; 0.45% Tween-20; 0.5 mg/ml proteinase K); incubate in 55°C water bath 

overnight, vortexing intermittently; centrifuge at 13,000 g for 5 minutes; remove liquid 

and perform standard PCI extraction as above.  With the exception of those stored on 

FTA cards, all samples were resuspended in 1× TE and concentrations determined 

through spectrophotometry.   

 For isolation of DNA from the FTA cards, 1.2 mm punches were washed with 

FTA solution to remove protein debris and rinsed with 1× TE following manufacturer 

recommendations.  FTA punches were either allowed to dry for 1 hour at room 

temperature or left at 4°C for a maximum of 24 hours before use. When FTA punches 
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were used in reactions, they were substituted for 50 ng DNA by addition of water to the 

reaction mix.      

 

Marker choice and multiplexing 

 Fifty-four bovine microsatellite markers were selected from the USDA gene 

mapping database (www.sol.marc.usda.gov).  Markers with high PIC values in bison and 

no known null alleles were preferentially selected (Schnabel 2001), such that there was a 

minimum of one marker per nuclear chromosome and at least 40 cM between syntenic 

markers, as mapped in the cattle genome.  Fifteen of the markers were utilized following 

the protocols from Schnabel et al. (2000) as designed for bison parentage testing, with 

minor changes in the fluorescent dyes and PCR protocols utilized.  The forward primer 

for each marker was labeled with 1 of 4 fluorescent dyes (NED, 6-FAM, HEX, VIC; PE 

Biosystems, Foster City, California).  Markers were multiplexed based on non-

overlapping allele size ranges and dye types (Table 2).   

 PCR conditions for multiplexes 3, 80 – 83, 85, 86, and URB011 were as follows 

(5 µl total volume): 50 ng template DNA or 1 FTA punch; 0.05 – 0.4 µM each primer; 

1× MasterAmp PCR Enhancer (Epicentre, Madison, WI); 500 µM dNTPs; 3.0 mM 

MgCl2; 1× reaction buffer; 0.375 units Taq DNA polymerase (Promega, Madison, WI).  

Conditions for multiplexes 1 and 84 were as above with the exception of 1.5× reaction 

buffer and 3.5 mM MgCl2.  Conditions for multiplex 2 were as above with the exception 

of 1.2× reaction buffer and 3.25 mM MgCl2.  All reactions were run on a GeneAmp PCR 

System 9700 thermal-cycler (PE Biosystems) under the following parameters (except 
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TABLE 2 

Summary information for 54 nuclear microsatellite loci used in this study 

Locus Labela Multiplex Chromosome 
(Position)b RA NA PIC 

AGLA232 NED 83 13 (79.5) 155-173 7 0.586 
BL1036 NED 85 14 (78.7) 177-193 5 0.681 
BM1225 NED 2 20 (8.0) 239-273 10 0.723 
BM1706 6-FAM 2 16 (80.6) 232-254 6 0.400 
BM17132 6-FAM 1 19 (58.6) 85-95 5 0.669 
BM1824 6-FAM 84 1 (108.6) 178-198 7 0.703 
BM1862 6-FAM 80 17 (86.3) 201-215 6 0.746 
BM188 HEX 84 26 (40.4) 99-123 9 0.529 

BM1905 NED 2 23 (64.3) 172-184 4 0.463 
BM2113 6-FAM 2 2 (106.2) 127-153 9 0.688 
BM2830 NED 86 5 (120.2) 142-164 10 0.800 
BM4028 6-FAM 86 12 (79.7) 108-126 7 0.641 
BM4107 HEX 85 20 (52.4) 159-185 8 0.726 
BM4311 6-FAM 82 6 (89.7) 90-104 6 0.745 
BM4440 NED 2 2 (55.0) 123-143 7 0.719 

BM47 6-FAM 85 23 (9.1) 103-111 4 0.303 
BM6017 HEX 82 X (4.7) 104-122 6 - 
BM711 6-FAM 82 8 (83.6) 161-177 6 0.442 
BM720 VIC 2 13 (38.6) 203-235 9 0.711 
BM757 HEX 83 9 (0.6) 186-202 9 0.439 

BMC4214 HEX 84 3 (123.0) 175-191 6 0.700 
BMS1001 NED 80 27 (5.1) 107-115 5 0.432 
BMS1074 NED 80 4 (74.9) 152-160 5 0.660 
BMS1117 HEX 3 21 (9.9) 89-99 4 0.610 
BMS1172 6-FAM 3 4 (27.3) 86-104 7 0.586 
BMS1315 HEX 85 5 (31.8) 135-149 5 0.587 
BMS1355 NED 81 18 (2.8) 146-154 4 0.544 
BMS1675 6-FAM 80 27 (64.1) 85-91 4 0.553 
BMS1716 HEX 80 11 (47.7) 185-197 6 0.613 
BMS1747 6-FAM 83 14 (4.2) 89-103 5 0.569 
BMS1857 6-FAM 85 29 (0.9) 142-168 10 0.820 
BMS1862 VIC 1 24 (32.8) 142-170 11 0.714 
BMS2258 HEX 81 7 (75.0) 127-152 11 0.816 
BMS2639 6-FAM 3 18 (57.0) 168-186 7 0.781 
BMS410 NED 1 12 (0.0) 83-97 6 0.555 
BMS510 VIC 1 28 (22.1) 91-95 4 0.622 
BMS527 6-FAM 1 1 (55.9) 159-177 8 0.692 
BMS528 6-FAM 83 10 (19.0) 140-152 5 0.694 
BMS601 6-FAM 81 19 (99.5) 172-180 5 0.682 
BMS812 NED 86 15 (68.8) 90-122 7 0.697 
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TABLE 2 CONTINUED 

Locus Labela Multiplex Chromosome 
(Position)b RA NA PIC 

BMS911 HEX 81 X (136.2) 100-114 6 - 
BMS941 NED 83 17 (30.1) 81-85 3 0.370 
HUJ246 NED 80 3 (67.9) 242-264 7 0.637 

IL4 6-FAM 84 7 (30.5) 83-105 10 0.804 
ILSTS102 NED 85 25 (6.5) 113-153 6 0.645 
INRA037 6-FAM 81 10 (69.9) 118-132 6 0.642 
INRA133 HEX 82 6 (8.2) 223-240 6 0.444 
INRA189 NED 82 Yc 96-100 2 - 
INRA194 HEX 86 22 (21.8) 144-160 5 0.493 
RM372 VIC 1 8 (19.1) 114-138 8 0.770 

TGLA122 NED 82 21 (67.3) 136-150 6 0.635 
TGLA44 NED 84 2 (0.8) 149-159 6 0.689 
TGLA53 6-FAM 86 16 (40.3) 132-142 6 0.608 
URB011 6-FAM URB011 29 (55.6) 139-155 8 0.714 

    Range 2-11 0.303-0.820 
    Average 6.48 0.629 

    Std Dev 2.03 0.122 
 

RA, called allele size range; NA, total number of alleles found in this study; PIC, polymorphic 
information content (Botstein et al. 1980); std dev, standard deviation; a, fluorescent dye label 

for forward primer; b, chromosomal positions (cM) as reported in the USDA cattle gene mapping 
database; c, in non-pseudoautosomal region (Liu et al. 2002) 

 
 
 
multiplex 84): 96°C 3 min; 4 cycles of 96°C 20 s, 58°C 30 s (-1°C/cycle), 65°C 90 s; 26 

cycles of 96°C 20 s, 54°C 30 s, 65°C 90 s; 1 cycle of 96°C 60 s, 54°C 60 s, 65°C 20 

min.  The following cycling parameters were used for multiplex 84: 96°C 3 minutes; 2 

cycles of 96°C 20 s, 58°C 30 s (-1°C/cycle), 65°C 90 s; 28 cycles of 96°C 20 s, 56°C 30 

s, 65°C 90 s; 1 cycle of 96°C 60 s, 56°C 60 s, 65°C 20 min.  Multiplex 84 and URB011 

were co-loaded into a single injection, as were multiplexes 1 and 2.   
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Fragment analysis 

 PCR products were separated on an ABI 310, 377, or 3100 Genetic Analyzer (PE 

Biosystems) using an internal size standard (Mapmarker LOW, Bioventures, Inc., 

Murfreesboro, Tennessee).  Multiple samples we analyzed on all 3 systems to 

standardize allele calling, and approximate fragment sizes and called allele sizes are 

shown in Appendix A.  In general, the ABI 310 sized fragments 1 – 1.5 bases below the 

ABI 377, while the ABI 3100 sized fragments about 0.5 bases below the ABI 310.  The 

reverse primers for BMS1172, BMS410, and BMS527 were 5’-tailed with a viral DNA 

sequence (GTGTCTT; Brownstein et al. 1996) partway through this project to either 

provide cleaner fragments or prevent problematic overlapping with multiplexed markers, 

as indicated in Appendix A. 

 Genotyper 3.6 (PE Biosystems) was used for allele identification and 

comparison.  Fragment sizes and called allele sizes, along with other pertinent 

information on individual samples, were maintained using an Access 2002 database 

(Microsoft®). 

 

Data analysis 

 Polymorphic information content values (PIC; Botstein et al. 1980) were 

calculated over the entire data set using the program Cervus 2.0 (Marshall et al. 1998).  

Tests of Hardy-Weinberg equilibrium (HWE) using an unbiased estimate of the exact 

probability and the Markov chain method (Guo and Thompson 1992) were performed 

using the program GENEPOP 3.1d (Raymond and Rousset 1995) for each autosomal 
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locus in each population.  When the null hypothesis of HWE was rejected (p < 0.01), 

score tests (U-tests; Rousset and Raymond 1995) of heterozygote excess and deficiency 

were performed in GENEPOP to determine the direction of deviation.  For all HWE 

tests, the Markov chain procedures were as follows: 10,000 step dememorization, 150 

batches, and 50,000 iterations per batch.  Allele frequencies, number of alleles, allelic 

richness (El Mousadik and Petit 1996), observed heterozygosity, and expected 

heterozygosity (Nei 1987) were calculated for each locus in each population using the 

program FSTAT 2.9.3.2 (Goudet 1995, 2001).  Allelic richness is a measure of the total 

number of alleles at a locus in a population independent of sample size, allowing for 

more valid comparisons between populations.  Expected heterozygosity, or unbiased 

gene diversity, is based only on allele frequencies and is therefore a more robust statistic 

for comparisons between populations than observed heterozygosity, which is dependent 

on effective population size. 

 Overall and pairwise population differences in allelic richness and expected 

heterozygosity were performed using ANOVA (p < 0.01 considered statistically 

significant) and the Bonferroni multiple comparison procedure (using a 99% confidence 

interval), respectively, in the statistical package Analyse-it 1.68 (Analyse-it Software, 

Ltd., Leeds, England).  Correlations were assessed using the Pearson correlation test 

within the same software package. 

 The contribution of each population to overall allelic richness and gene diversity 

(heterozygosity) was measured following the equations outlined in Petit et al. (1998).  

This method uses both diversity within and differentiation among populations to 
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establish the contribution of a particular population to overall genetic diversity.  In 

calculating the contribution of a particular population to overall allelic richness, this 

method weights rare and private alleles and is not dependent on sample size.  All 

necessary calculations were performed using FSTAT.  Overall gene diversity was 

estimated using hT', which is corrected for sample size.  Gene diversity per population 

was measured using the unbiased estimator of Nei (1987), and corresponds to expected 

heterozygosity as discussed above. 

 Genetic differentiation and distance values between populations were calculated 

to help elucidate genetic relationships among populations.  Pairwise FST values as a 

measure of genetic differentiation (Weir and Cockerham 1984) between populations 

were calculated in FSTAT.  Two measures of genetic distance, DS (Nei 1972) and (δµ)2 

(Goldstein et al. 1995) were calculated using POPDIST 1.1.1 (available online at 

http://www.biology.ualberta.ca/jbrzusto/GeneDist.html).  DS is widely used for many 

types of genetic data and is based on the infinite alleles model of evolution, while (δµ)2 

was designed specifically for use on microsatellite loci, is based on the stepwise 

mutation model of evolution, and is not sensitive to fluctuations in population size 

(Goldstein et al. 1995; Goldstein and Schlötterer 1999; Nei and Kumar 2000).  The 

latter, however, has the notable disadvantage of high sampling variances (Nei and 

Kumar 2000).  From the genetic distance data, unrooted trees were created using the 

neighbor-joining method (Saitou and Nei 1987) in PHYLIP 3.7 (Felsenstein 1993) with 

randomized input order of taxa.  The neighbor-joining method is commonly employed 
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for creating trees from distance matrix data, does not assume equal rates of evolution 

across loci (molecular clock), and minimizes overall tree length (Weir 1996). 

 

Results 

Sampling 

 A total of 2,169 samples were genotyped to > 90% completion such that 5 or 

fewer loci were missing genotypes for any given individual, not including the Y-

chromosome marker INRA189.  Each individual marker was genotyped to > 90% 

completion in each population.  The total number of samples genotyped for each 

population and approximate population census sizes are shown in Table 3. 

 It was not possible to meet the initial sampling goal of a 20% minimum of the 

census population size in every case.  Samples were not obtained from SH.  

Furthermore, a sub par sampling of approximately 6.5%, 5.8%, and 16.3% of the census 

population size was obtained from GT, WM, YNP, respectively.  In the case of GT and 

YNP, the absence of working facilities greatly inhibited necessary sampling.  The GT 

samples were all from bison radiocollared, trapped, and tested for other scientific 

studies, while approximately 92% of the YNP samples were from winter collections of 

bison leaving park boundaries (all others from radiocollared bison used for other 

studies).  Approximately 30% of the total number of bison from the 10 sampled federal 

herds were genotyped (2169/6940; Table 3). 

 

 



38 

 

TABLE 3 

Total number of bison sampled for 54 polymorphic loci by population and sex 

 

 

 

 

 

 

 

 

 
 

See Table 1 for population abbreviations.  a, current approximate  
census population size, as estimated by individual herd managers; when  

possible, estimates are given of total census population size  
at time of collection for this study; b, sex unknown at time of  

collection and determined by X- and Y-chromosome microsatellite  
markers for the following samples: GT (39 total), NBR (46 total),  

WM (35 total), and YNP (11 total) 
 
 
 

General comparisons of genetic diversity 

The number of alleles per locus across all 54 nuclear markers ranged from 2 

(INRA189) to 11 (BMS1862 and BMS2258), with an average of 6.48 ± 2.03 SD 

alleles/locus (Table 2).  For the 51 autosomal markers, PIC values ranged from 0.303 

(BM47) to 0.820 (BMS1857) with an average of 0.629 ± 0.122 (Table 2).     

A total of 350 alleles were detected in the 54 polymorphic nuclear microsatellites 

utilized in this study.  The total number of alleles in each population was used to 

Population Censusa Total Males Females 

BNP 875 312 119 193 

FN 379 167 83 84 

GT 600 39b 10 29 

NBR 350 152b 83 69 

NS 63 49 20 29 

TRN 312 270 115 155 

TRS 371 324 120 204 

TSBH 40 40 19 21 

WC 350 293 117 176 

WM 600 35b 0 35 

YNP 3000 488b 214 274 

Sum 6940 2169 900 1269 
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calculate the percentage of total allelic diversity present within each population, which 

ranged from 39.1% in the TSBH to 76.9% in the NBR population (Table 4). 

 Appendix B details allelic frequencies for all 54 loci.  A total of 36 private alleles 

from 24 loci were distributed as follows: WC 10 alleles; NBR 9 alleles; YNP, TSBH, 

and WM each with 4 alleles; BNP 3 alleles; TRS and FN each with 1 allele.  BMS2258 

had the most number of private alleles of any locus with 4 total (1 BNP, 2 WC, 1 WM).  

A total of 10 fixed loci, not including INRA189 on the Y-chromosome, were distributed 

as follows: GT 1 locus; TRN 2 loci; TSBH 7 loci.  Total number of alleles (NA), allelic 

richness (AR), observed heterozygosity (HO), and expected heterozygosity (HE) for each 

locus in each population are detailed in Appendix C.  AR, HO, and HE were calculated 

from females only for the X-chromosome markers BM6017 and BMS911.  Table 4 

summarizes the average values for these statistics and total numbers of private alleles 

and fixed loci in each population. 

 The correlation between AR and HE was tested for all autosomal and X-

chromosome loci (53), excluding population-locus pairs with fixed alleles (10), for 573 

total population-locus pairs.  Figure 1 illustrates the correlation between these two 

statistics (r = 0.73 ± 0.05 SD).  The null hypothesis of no correlation was rejected using 

a two-tailed t-test (p < 0.0001).  HE tends to have more intrinsic variation with lower AR 

values in this data set, as indicated by the flared shape of the observations in Figure 1.  

These results compare well with published results on the utility of allelic richness for 

isozyme data, where a correlation of r = 0.77 was observed between allelic richness and 

heterozygosity (Petit et al. 1998).
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TABLE 4 

Summary statistics for 54 nuclear polymorphic loci across 11 bison populations 

 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 
NA 4.50 4.37 4.06 4.98 4.78 3.52 4.24 2.54 4.80 4.25 4.83 

% total alleles 69.4 67.4 62.6 76.9 73.7 54.3 65.4 39.1 74.0 64.3 74.6 
AR 4.11 4.06 3.96 4.60 4.60 3.26 3.99 2.52 4.49 4.21 4.44 
HO 0.565 0.576 0.531 0.639 0.605 0.517 0.564 0.371 0.654 0.580 0.615 
HE 0.574 0.590 0.560 0.647 0.631 0.513 0.574 0.373 0.653 0.599 0.627 

Private Alleles 3 1 0 9 0 0 1 4 10 4 4 
Fixed Loci 0 0 1 0 0 2 0 7 0 0 0 

 
See Table 1 for population abbreviations.  NA, average number of alleles per locus; % total alleles based on 350 total  

across 54 loci; AR, average allelic richness; HO, average observed heterozygosity; HE, average expected heterozygosity;  
number of fixed loci excludes INRA189 (Y-chromosome) 
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Figure 1. —Correlation between allelic richness and expected heterozygosity.
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Average AR and HE were used to compare populations due to the relative 

insensitivity of these statistics to sample sizes (Figure 2).  As expected, the two measures 

were positively correlated among populations.  NBR and NS had the highest average AR 

(4.60), while WC had the highest average HE (65.3%).  TSBH scored the lowest in both 

categories (2.52 and 37.3%, respectively).  Overall differences in AR and HE were 

significant, with significant differences noted between the following population pairs for 

AR: TSBH vs. all populations except TRN; TRN/NBR; TRN/NS; TRN/WC; TRN/WM; 

TRN/YNP.  Similarly, significant differences were indicated between the following 

populations for HE: TSBH vs. all populations; TRN/NBR; TRN/NS; TRN/WC.  After 

excluding the TSBH from ANOVA testing, overall differences among the 10 federal 

bison populations for both AR and HE were still significant. 

 

HWE testing 

Of the 561 (51 autosomal loci, 11 populations) possible tests of HWE, 552 were 

performed (excluding 9 monomorphic population-locus pairs).  A total of 37 tests (6.7%) 

rejected the null hypothesis of HWE (p < 0.01).  BMS601 and INRA133 consistently 

failed the HWE test and heterozygote deficiency score test over multiple populations (10 

and 7, respectively), indicating the presence of null alleles.  These 2 loci were omitted 

from further analysis to prevent bias, bringing the total number of nuclear autosomal 

markers to 49 (52 total including X- and Y-chromosome markers).  The overall rate of 

rejection when excluding BMS601 and INRA133 of 3.8% ([37 rejected tests – 17 

rejected tests of BMS601 and INRA133]/[552 tests – 22 tests of BMS601 and 
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Figure 2. —Comparison of average allelic richness and expected heterozygosity among 11 bison populations.  See Table 1 for 

population abbreviations. 
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INRA133]) is expected given the large number of tests performed and is comparable to 

reported HWE deviations in other bison microsatellite studies (Wilson and Strobeck 

1999; Schnabel et al. 2000).   

BNP had the highest rate of heterozygote deficiency of any population, not 

including BMS601 and INRA133, at 12.2 % (6/49 loci).  TRS had the next highest 

heterozygote deficiency rate at 6.1% (3/49 loci), while all remaining populations had 

rejection ranges for these tests of 0.0 – 4.1%. 

 

Relative contribution of each population to genetic diversity  

 The contribution of individual populations to overall genetic diversity was 

examined across all 10 federal bison populations using 49 autosomal microsatellites.  

The relative contributions of each population for both allelic richness (Cr
T) and gene 

diversity (CT) are shown in Table 5 (individual scores multiplied by 100 for 

simplification).  Each measure is further divided into diversity and differentiation 

components (Cr
S, Cr

D and CS, CD, respectively).  The diversity component measures the 

effect of within-population diversity while the differentiation component measures the 

level of differentiation of a particular population (k) versus all other populations.  

Negative values indicate a below-average contribution to genetic variation.  The additive 

effects of the 2 subcomponents produce the observed contributions for each measure. 

 Figure 3 illustrates the relative contribution of each of the tested federal bison 

populations to overall gene diversity.  Only 4 populations made positive contributions to 

overall gene diversity: NBR, WC, YNP, and WM (in descending order of CT).  NBR, 
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WC, and YNP contributed positively to overall gene diversity due to high within-

population diversity, while WM was actually below average for within-population 

diversity but highly differentiated from other populations.  The remaining 6 populations 

did not contribute to overall gene diversity.  Measurement of population contribution to 

total allelic richness produced similar results (Figure 4).  The same 4 populations had 

positive contributions to overall gene diversity in a slightly different order: YNP, WC, 

NBR, and WM (in descending order of Cr
T).  NBR, WC, and YNP contributed positively 

to overall allelic richness due to strong divergence from other populations, while WM 

showed positive divergence but below average within-population diversity.      

 

Genetic relationships among populations 

Pairwise FST values between populations, as calculated on 49 autosomal loci, are 

shown in Table 6.  Using this measure, the most genetically similar population pairs 

were FN/NS (FST = 0.0242) and TRS/BNP (FST = 0.0397), while those most distinct 

were TRN/TSBH (FST = 0.3513) followed by GT/TSBH (FST = 0.3472).  DS and (δµ)2 

genetic distance measures between populations, also calculated on 49 autosomal loci, are 

shown in Table 7.  Based on genetic distance measures, the most closely related 

populations are FN/NS (DS = 0.05; (δµ)2 = 0.11), while the most distantly related are 

TRN/TSBH. (DS = 0.683; (δµ)2 = 2.297).  Figure 5 illustrates neighbor-joining trees 

based on each of the genetic distance measures.  
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TABLE 5 

Contributions of federal bison populations to overall gene diversity and allelic richness 

 
 

 

 

 

 

 

See Table 1 for population abbreviations.  hk, gene diversity; CT, relative contribution to overall gene diversity;  
CS, component of CT due to within-population diversity; CD, component of CT due to differentiation between  

population k and all other populations; AR, allelic richness; Cr
T, relative contribution to overall allelic richness;  

Cr
S, component of Cr

T due to within-population diversity; Cr
D, component of Cr

T due to differentiation between  
population k and all other populations 

 
 
 

Population hk CT CS CD AR Cr
T Cr

S Cr
D 

BNP 0.5808 -0.7958 -0.3239 -0.4719 4.2335 -0.9703 -0.0801 -0.8902
FN 0.5976 -0.6229 -0.0523 -0.5706 4.1908 -0.4861 -0.1676 -0.3184
GT 0.5652 -0.3398 -0.5779 0.2381 4.0704 -0.0739 -0.4144 0.3405

NBR 0.6443 1.0850 0.7057 0.3792 4.6747 2.2993 0.8241 1.4752
NS 0.6323 -0.3964 0.5120 -0.9084 4.7291 -0.3933 0.9356 -1.3289

TRN 0.5205 -0.9508 -1.3025 0.3517 3.3540 -1.2657 -1.8828 0.6171
TRS 0.5840 -0.6557 -0.2716 -0.3841 4.1311 -0.9324 -0.2900 -0.6425
WC 0.6564 1.0790 0.9035 0.1756 4.5925 3.9047 0.6557 3.2491
WM 0.5930 0.7750 -0.1262 0.9012 4.2319 0.5373 -0.0835 0.6208
YNP 0.6342 0.7958 0.5418 0.2540 4.5180 4.5547 0.5030 4.0517
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Figure 3. —Relative contribution of individual bison populations to overall gene diversity (heterozygosity), subdivided into 

diversity and differentiation components.  Overall contribution to gene diversity (CT%) is indicated by solid triangles. 
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Figure 4. —Relative contribution of individual bison populations to overall allelic richness, subdivided into diversity and 

differentiation components.  Overall contribution to allelic richness (CT%) is indicated by solid triangles. 
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TABLE 6 

Pairwise FST values among 11 bison populations 

 BNP FN GT NBR NS TRN TRS TSBH WC WM 
FN 0.0459 -         
GT 0.1235 0.1161 -        

NBR 0.1505 0.1398 0.1361 -       
NS 0.0667 0.0242 0.1114 0.0982 -      

TRN 0.0702 0.0991 0.1457 0.1909 0.1130 -     
TRS 0.0397 0.0631 0.1123 0.1487 0.0767 0.0703 -    

TSBH 0.3103 0.3018 0.3472 0.2859 0.2949 0.3513 0.3070 -   
WC 0.1375 0.1290 0.1418 0.0960 0.0961 0.1645 0.1401 0.2602 -  
WM 0.1609 0.1495 0.1924 0.1339 0.1053 0.2266 0.1676 0.3285 0.1119 - 
YNP 0.1464 0.1360 0.1022 0.0976 0.0990 0.1851 0.1501 0.2347 0.0855 0.1372

 
See Table 1 for population abbreviations.  FST values based on 49 autosomal loci. 

 
 

 
TABLE 7 

DS and (δµ)2 genetic distances among 11 bison populations 

 
See Table 1 for population abbreviations.  DS above diagonal; (δµ)2 below diagonal 

 

 

 

 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 
BNP - 0.074 0.222 0.322 0.120 0.097 0.062 0.651 0.296 0.326 0.312
FN 0.163 - 0.216 0.312 0.050 0.147 0.105 0.622 0.292 0.313 0.298
GT 0.588 0.496 - 0.296 0.223 0.226 0.200 0.643 0.325 0.415 0.204

NBR 0.570 0.560 0.597 - 0.227 0.377 0.320 0.634 0.225 0.310 0.216
NS 0.259 0.110 0.569 0.419 - 0.176 0.141 0.557 0.228 0.226 0.221

TRN 0.406 0.514 0.631 0.758 0.505 - 0.098 0.683 0.321 0.437 0.378
TRS 0.147 0.211 0.481 0.559 0.295 0.272 - 0.645 0.307 0.348 0.325

TSBH 1.673 1.534 1.319 1.658 1.498 2.297 1.650 - 0.576 0.601 0.458
WC 0.556 0.569 0.664 0.594 0.498 0.64 0.588 1.886 - 0.256 0.188
WM 0.604 0.597 0.829 0.69 0.471 0.927 0.682 1.335 0.411 - 0.312
YNP 0.601 0.588 0.383 0.396 0.481 0.881 0.650 1.131 0.375 0.513 - 
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Figure 5. —Neighbor-joining tree diagrams for DS (top) and (δµ)2 (bottom) distance 

measures
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Discussion 

Levels of overall bison genetic variation and heterozygosity 

 The levels of bison genetic variation and heterozygosity described here are 

similar to those reported previously in bison using microsatellite markers.  Not including 

the TSBH, which clearly has significantly lower levels of genetic variation and 

heterozygosity compared to the other tested populations (see below), allelic richness 

ranged from 3.26 – 4.60 while expected heterozygosity ranged from 51.3 – 65.3% in the 

federal bison populations.  Similarly, Wilson and Strobeck (1999) reported 3.18 – 6.55 

alleles/locus (uncorrected for sample size) and average observed heterozygosity ranging 

from 29.5 – 66.9% in a microsatellite survey of 11 loci across 11 public bison 

populations.  Schnabel et al. (2000) also reported average expected heterozygosity 

across 15 of the same markers utilized in this study in 16 public and private bison 

populations of 41.6 – 69.8%. 

Compared with domestic cattle, bison tend to have somewhat less genetic 

variation and lower average heterozygosity (Ritz et al. 1996; Mommens et al. 1998; 

Schnabel et al. 2000), most likely due to differences in management techniques between 

the two species, the dramatic bison census size bottleneck around 120 years ago, and the 

maintenance of extant bison in relatively small, fragmented populations.  However, the 

bison populations examined in this study have substantially greater nuclear genetic 

variation than reported in other post-bottleneck mammalian species (e.g. O’Brien et al. 

1983; Hoelzel et al. 1993; Wisely et al. 2002).   
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Intrinsic population growth rates and the duration and severity of bottleneck 

events are known to affect the predicted rate of loss of rare alleles (Nei et al. 1975).  In 

bison, a combination of these factors likely led to a moderate loss of genetic variation 

compared with other post-bottleneck species.  For instance, the duration of the 

population bottleneck apex was relatively short, lasting only 20 – 30 years.  Following 

the census bottleneck, the total number of bison increased rapidly from a conservative 

estimate of 800 bison in 1888 to more than 8,000 bison by 1920 (see Chapter I).  

Furthermore, the selection of bison used in the 5 foundation herds (Chapter I) from 

Texas to Canada and across the Great Plains region at the apex of the bottleneck – 

effectively sampling a large portion of the historic range – may have inadvertently 

captured a large portion of pre-bottleneck genetic variation.  Direct support of this 

hypothesis would be possible through genetic analysis of bison remains dating to pre-

1880 in a manner similar to that used in this study. 

 

Evidence of non-random mating 

Although most population-locus combinations did not indicate a significant 

departure from HWE, heterozygote deficiency was observed in 12.2% of the tested loci 

at BNP.  This level of rejection is at least twice that observed in the other tested bison 

populations, and is somewhat unexpected given the relatively large census population 

size (~875 bison).  McClenaghan et al. (1990) found similar results in BNP bison with a 

survey of 24 blood protein loci.  Only 1 of the 24 loci was polymorphic, and when the 

population was subdivided by origin (see Chapter I), the sampled portion from TR 
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indicated a deficiency of heterozygotes.  Furthermore, at least 2 of the other tested 

monomorphic loci were known to be polymorphic in other federal bison populations 

(NBR/WM; McClenaghan et al. 1990).   

These results indicate that for at least some loci, significant deviations from 

HWE due to an overabundance of homozygotes exist in the BNP bison population.  Both 

population subdivision and inbreeding could account for these results, and further 

investigation is necessary to reveal the source of the observed heterozygote deficiencies.  

 

Comparisons of genetic diversity among federal bison populations 

Clear differences exist among federal bison populations in overall AR and HE.  

Among the federal populations, TRN has significantly lower levels of genetic variation 

than other tested populations.  Comparisons of the total number of alleles present in 

individual populations indicates NBR, YNP, NS, and WC (in descending order) have the 

highest overall allelic diversity, while TRN has the lowest. 

 Analyses of the contribution of individual populations to overall allelic richness 

and gene diversity reveal 4 of the 10 federal populations contribute the most to these 

measures: NBR, WC, WM, and YNP (Table 5).  Of these, WM had below-average 

within-population diversity components for both gene diversity and allelic richness 

(Figure 3, 4).  The WM bison population, while genetically divergent from other tested 

populations, does not have appreciable levels of within-population diversity that 

contribute to the overall genetic diversity of federal bison populations.  The notable high 

contribution of the divergence subcomponent to overall allelic richness (Figure 4) in 
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NBR, WC, WM, and YNP correlates with these populations having the most number of 

private alleles (Table 4).  These results are consistent with the design of the tests to 

weight rare and private alleles in calculating overall contribution of individual 

populations to allelic richness (Petit et al. 1998).  

 Although the NS population has high levels of overall allelic diversity, the recent 

origin of the NS population from other federal populations prohibits a positive 

contribution of NS to overall allelic richness and gene diversity.  This is clearly 

illustrated in Figures 3 and 4, where NS displays positive within-population diversity 

subcomponents but below-average differentiation subcomponents for both measures.  

This is an important point, since average allelic richness and expected heterozygosity 

(Table 4, 5) alone would have placed NS within the top 2 or 3 populations for these 

measures.  When making decisions on primary targets for conservation efforts, 

preference should obviously be given to source populations of genetic diversity.  

 Each of the 6 populations that did not contribute positively to overall gene 

diversity and allelic richness are at least partially from the same founding stock (BNP, 

FN, GT, NS, TRN, TRS).  FN bison were used as founding stock for the TRS and NS 

populations, while TRS bison were used as founders for the TRN and BNP populations 

and as supplements to the GT bison population (Table 1).  The genetic similarity of these 

populations is clear with the exception of GT as a possible outlier of the group (Figure 5; 

see discussion below).  The similarity of these 6 populations has a direct influence on the 

genetic contribution of each to the overall genetic diversity of federal bison populations.     
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The insignificant contribution of the BNP bison population to overall genetic 

diversity is somewhat unexpected, since BNP was the only federal population 

supplemented with bison from the Colorado National Monument (Table 1).  It is 

possible that the bison used to supplement BNP were not significantly different from 

other bison in federal populations, such that the addition of these bison may have 

changed the genetic constitution of the BNP population but not the contribution of this 

population to overall genetic diversity.  Furthermore, these supplemental bison may have 

produced few offspring, thereby contributing minimally to the germplasm of the BNP 

population.  Lastly, non-random sampling may have precluded the detection of diversity 

due to the introduced bison, especially if the “introduced” group acts as a subpopulation 

with little interaction with the “resident” group.  The 2002 roundup, from which the 

tested samples were obtained, included only 496 of the estimated 875 bison (~56%) in 

the entire BNP population.  Of these, 312 were used in this study.  Although the goal of 

testing 20% of the census population size was clearly exceeded (~35% genotyped), 

population substructure may have prohibited a truly random sampling from this 

population during roundup.  The genetic similarity between the tested bison from BNP 

and TRS, as indicated by relatively low FST, DS, and (δµ)2 estimates (Table 6, 7) is 

further evidence that one or more of the above-mentioned scenarios has probably 

occurred.  In fact, the FST estimate between BNP and TRS (0.0397) is lower than that 

between the two TR populations (0.0703).  Further testing of additional BNP bison and 

analysis of potential population substructure is necessary to resolve this issue. 
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The TRN population was founded exclusively from TRS in 1962, just 6 years 

after the TRS population was created from FN bison (Table 1).  Although genetically 

similar based on FST and distance measures (Table 6, 7), there are several notable 

difference between the two populations.  A single private allele (BM2113, allele 151) is 

found in the TRS population that is not found in any other tested population.  This 

private allele is most likely due to a new mutation, as it occurs at a low frequency and is 

only 2 base pairs different from a fairly frequent allele (allele 153) shared among all 6 

populations related to FN and NBR (Appendix B).  Further, 2 loci are fixed in the TRN 

population, but polymorphic in the TRS population (BMS1001 and BMS941; Appendix 

B).  In both cases, the most frequent allele in the TRS population is that which is fixed in 

the TRN population.  Furthermore, the TRN population has lower average allelic 

richness and expected heterozygosity compared with the TRS population (Figure 2).  

Although the TR populations have been managed similarly, they have been maintained 

at different census numbers.  Until 1998, the south unit consistently maintained a 2 – 3 

fold larger population (~250 – 400) than the north unit (~100 – 250).  The most likely 

source of the noted differences in fixed loci, allelic richness, and heterozygosity between 

the populations is random genetic drift, which tends to eliminate rare alleles and 

decrease overall heterozygosity, especially in small populations.  Because no other 

introductions have been made into either TR population since their inception, and since 

both are under the same management plan, one logical management alternative would be 

the movement of bison from the TRS to the TRN population to increase genetic diversity 

and heterozygosity in the latter.   
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Genetic relationships among bison populations 

 The genetic relationships among the tested bison populations as determined 

through FST, DS, and (δµ)2 measures were, in general, consistent with the known 

histories of the populations.  The neighbor-joining trees shown in Figure 5 for DS and 

(δµ)2 are mostly identical in the placement and grouping of populations.  Small 

differences exist in the placement of GT and NBR (see below). 

The nearest neighbor of the TSBH is YNP, as might be predicted due to the 

introduction of 3 bison from the original Goodnight herd into YNP in 1902.  One 

Goodnight bull was also sent to the NBR in 1908, but either the contribution of this 

single bull was insignificant in the overall genetic constitution of the NBR bison 

population, or the admixture of many other sources of bison into the NBR has obscured 

the contribution (Table 1).  The TSBH is located on the longest branch of either tree, an 

effect of the amount of genetic differentiation between the TSBH and even the most 

closely related federal bison populations.  The last 120 years of chronic small population 

size have driven genetic drift – and likely inbreeding (see Chapter IV) – in the TSBH.  

Consequently, the TSBH has significantly lower levels of heterozygosity and allelic 

variation compared with other tested populations and the highest number of fixed loci 

(7/53 = 13.2%; Table 4).  If true genetic differences once existed between the southern 

and northern plains bison herds, and the only pure remnant of the southern plains bison 

is contained in the TSBH, the observed long branch may also be the effect of differences 

in initial genetic composition of the TSBH compared with the federal populations (see 
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Chapter I).  Some support for this suggestion comes from the 4 private alleles found in 

the TSBH population.  However, the TSBH is known to contain domestic cattle 

introgression dating back to the experiments of Charles Goodnight in the late 1800s and 

early 1900s (see Chapter IV) and the observed private alleles may also due to this 

historic introgression.   

 The closest genetic neighbor of YNP is WC (DS = 0.188, (δµ)2 = 0.375) followed 

by GT (DS = 0.204, (δµ)2 = 0.383).  The YNP bison used to supplement the WC herd 

(Table 1) markedly influenced the genetic constitution of the WC population.  Although 

WC and WM share a common branch in both distance trees, the raw distance measures 

indicate that YNP has the closest genetic similarity with WC followed by WM (DS = 

0.256, (δµ)2 = 0.411).  The close genetic relationship of the WC and WM bison 

populations is consistent with the history of these populations since both were founded 

with bison from the New York Zoological Park herd.  The GT population was founded 

with bison from YNP, and migration from YNP to GT is known to occur at low rates 

(Table 1; Steve Cain pers. comm.).  The neighbor-joining tree based on (δµ)2 distances is 

most consistent with recent migration, since the GT population is nearer to YNP than the 

NBR/WC/WM group. 

 The placement of the NBR population on the trees is inconsistent, and may result 

from the multiple unique sources of bison used to supplement the population (Table 1).  

Again, the (δµ)2 distance tree is most consistent with known history, since the DS tree 

actually places NBR on a branch with WC and WM.  The only historic ties between 

NBR and WC are that both have been supplemented with YNP bison (only 2 added to 
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NBR in 1953), and no known relationship exists between WM and NBR.  The (δµ)2 

distance tree places the NBR population alone on a branch between the WC/WM and 

GT/YNP nodes. 

 The close genetic relationship between NS and FN is corroborated with FST, DS, 

and (δµ)2 estimates.  The relationship is consistent with the fact that more FN bison were 

used as stock for NS than from any other population (17 FN, 8 NBR, 6 WM; Table 1).  

As such, FN represents approximately 51% of the founders of the NS population, and 

assuming all introduced bison have contributed equally to breeding, has the most 

representation in the genetic constitution of the current NS bison population. 

The overall topology of the FN/BNP/TRN/TRS group is also consistent with 

known population histories.  As discussed above, FN was used both directly and 

indirectly as founding stock for all 3 of the other populations.  Of the group, TRN has a 

notable long branch in both trees, most likely due to genetic drift as discussed above. 

 Although few differences exist between the trees presented in Figure 5, the tree 

based on (δµ)2 estimates is generally more consistent with historic records from 

individual populations than the tree produced from DS estimates.  The two distance 

measures are fundamentally different in their treatment of genetic data.  While (δµ)2 is 

calculated using average squared differences in allele sizes between populations, DS is 

dependent on the frequency distributions of shared alleles between populations 

(Goldstein and Pollock 1997).  The theoretical advantage of (δµ)2 for use on 

microsatellite data is the basis of this measure on the stepwise mutation model, which is 
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a better fit to the known patterns of microsatellite evolution than the infinite alleles 

model on which DS is based (Goldstein et al. 1995; Goldstein and Schlötterer 1999). 

 

Concluding remarks 

In general, the bison populations represented in this study display a moderately 

high level of overall genetic variation, especially considering the severe bottleneck 

sustained only 120 years ago and small number of founders used for each population.  

There are, however, notable differences in overall allelic variation and heterozygosity 

and the contribution of each population to overall genetic variation among federal bison 

populations.  The genetic relationships among the populations analyzed in this study are 

mostly supported by known historic records of genetic sources for individual 

populations. 

This study represents the first in-depth examination of the genetic constitution 

and relationships of U.S. federal bison populations.  As such, the results and conclusions 

of these data are expected to have a lasting impact on future management decisions of 

these populations.  These data also provide background genetic information for the 

investigation and analysis of the effect of various management strategies employed 

within bison populations, as will be further discussed in Chapters IV and V.  
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CHAPTER III 

AN ANALYSIS OF DOMESTIC CATTLE INTROGRESSION IN U. S. 

FEDERAL BISON POPULATIONS 

 

“When I started to breed cattelo, people ridiculed me; they thought I was crazy.  I guess 
if I had told them what I hoped to do they would have sent me to the insane asylum … 
Here, in the cattelo is an animal that has not only got the beef which is the finest in the 

world, but an animal that will furnish furs that you can wrap yourselves in and be 
comfortable.” 

— Charles “Buffalo” Jones 1907 

 

Introduction 

Natural interspecies hybridization, with or without introgression of genetic 

material, is known within all biological kingdoms and from the highest orders including 

plants, fishes, birds, and mammals.  From an evolutionary view, species with the ability 

to naturally hybridize are by necessity closely related.  Those species which produce 

fertile hybrids in either direction of the interspecies cross are more correctly considered 

conspecific, although the demotion of separate species to subspecies status is often 

avoided for historical and/or political reasons.  An example of this is found in the case of 

North American bison (Bison bison) and European bison (B. bonasus), as discussed in 

Chapter I.  Natural hybridization is likely an important evolutionary process (Arnold 

1992; Dowling and Secor 1997).  Some natural hybrids have higher levels of fitness than 

the parental taxa, and are therefore likely to take over parental taxa distribution(s) and/or 

invade new ecological niches (Arnold and Hodges 1995).  In this manner, natural 
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hybrids may lead to new adaptive complexes and eventually new species.  The influence 

of natural hybridization on speciation has not, however, been studied with great detail.  

As the impact of humans on wildlife species has become better understood and 

molecular biology techniques have advanced, human-influenced (anthropogenic) 

interspecies hybridization has become an ecologically and politically important topic.  

Both natural and anthropogenic introgression between threatened and introduced species 

are cause for alarm since widespread introgression can lead to population or species 

extinction (Rhymer and Simberloff 1996).  Furthermore, hybridization as a direct result 

of anthropogenic activity, especially in “wild” species, is generally discouraged 

(Simberloff 1996) so as to minimize human impact on the evolution of natural species. 

Within mammals, molecular biology techniques have detected interspecies 

hybridization in primates (Painter et al. 1993) and deer (Carr et al. 1986; Abernethy 

1994) and between wild and domestic cats (Randi et al. 2001) and dogs (Wayne and 

Jenks 1991; Gottelli et al. 1994), although hybridization has been observed within other 

mammalian groups (van Gelder 1977; Rhymer and Simberloff 1996).  Within bovids, 

protein electrophoresis has detected hybridization between banteng (Bos javanicus) and 

domestic cattle (B. taurus; Davis et al. 1988), while RFLP analyses have indicated 

hybridization between zebu (B. indicus) and domestic cattle (Nijman et al. 1999).  

Hybrids are known to form among nearly all combinations of species from the Bos 

genus (van Gelder 1977). 

Although bison and domestic cattle can produce fertile offspring, all reports of 

hybrids are from human-controlled matings (Jones 1907; Boyd 1908, 1914; Goodnight 
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1914; Steklenev and Yasinetskaya 1982; Steklenev et al. 1986).  That is, bison and 

domestic cattle do not produce hybrids naturally and will mate preferentially with their 

own species if given opportunity.  Human-controlled mating of male bison to female 

domestic cattle has been recorded extensively, although the reciprocal cross is 

exceedingly difficult to produce (Boyd 1914; Goodnight 1914; Steklenev and 

Yasinetskaya 1982).  Even in the first case, the birth rate of first-generation hybrid 

offspring is quite low due to a combination of a high death rate of the birthing mothers in 

conjunction with fetuses too large to pass and accumulations of perifetal fluids in late 

pregnancy (Boyd 1908; Steklenev and Yasinetskaya 1982).  Male first- and second-

generation hybrid progeny are sterile in nearly all cases, as predicted by Haldane’s 

(1922) rule since males are the heterogametic sex, and presumably due to differences in 

Y-chromosome structure and possibly increases in chromosome aberrations and 

polyploid cells (Steklenev and Yasinetskaya 1982; Steklenev et al. 1986).  Alternatively, 

female hybrid progeny can productively produce fertile offspring, especially when 

backcrossed to bison (Boyd 1908, 1914; Goodnight 1914; Steklenev and Yasinetskaya 

1982). 

Polziehn et al. (1995) and Ward et al. (1999) found evidence of domestic cattle 

mitochondrial DNA (mtDNA) introgression in several public bison populations, 

including CSP and NBR.  Notably, Ward et al. (1999) did not find evidence of domestic 

cattle mtDNA introgression in bison from 4 other U.S. federal populations (FN, WC, 

WM, YNP) or in wood or plains bison from Canadian federal parks.  The mitochondrial 

screen developed by Ward et al. (1999) involves the co-amplification of a 16S mtDNA 
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fragment as an internal PCR control and a D-loop mtDNA fragment.  The D-loop 

fragment primers are designed in a conserved region of the domestic cattle mtDNA 

which is highly degenerate in wild bovids, including bison, such that amplification only 

occurs when domestic cattle mtDNA is present.  Verification of suspect domestic cattle 

mtDNA in bison and wild bovids is achieved through sequencing and phylogenetic 

analysis (Ward et al. 1999).  Support for Y-chromosome domestic cattle introgression in 

North American bison was not found through analysis of a single Y-chromosome marker 

(Ward et al. 2001).  The apparent uniparental introgression from female domestic cattle 

to bison is corroborated by historical and experimental evidence, as discussed above.   

A total of 20 autosomal microsatellites distributed on 12 chromosomes with non-

overlapping allele size ranges in bison and domestic cattle have been used to detect 

domestic cattle nuclear introgression in several public bison populations (Ward 2000).  

When possible, one or more additional diagnostic microsatellites within ~8 cM of the 

original locus were used as confirming markers to establish regions of chromosomes 

introgressed from domestic cattle (Ward 2000).  This type of screen has the advantage of 

eliminating most, if not all, confounding results at single loci due to allelic size 

homoplasy.  The probability of cattle-like alleles in two or more linked loci as the result 

of two mutation events in a single bison population (i.e. not as the result of 

introgression) is exceptionally small. 

The combination of mitochondrial and nuclear analyses have revealed evidence 

of domestic cattle introgression in all state-managed bison populations examined, but not 

in some U.S. and Canadian federal bison herds (Ward et al. 1999; Ward 2000).  Of the 
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11 U.S. federal bison populations discussed in Chapter I, 5 have previously been 

examined for genetic evidence of domestic cattle mitochondrial DNA introgression (FN, 

NBR, WC, WM, YNP; Ward et al. 1999) while only 3 have been examined for evidence 

of domestic cattle nuclear DNA introgression (FN, NBR, YNP; Ward 2000).  In both 

analyses, no more than 38 bison from any given federal population were examined. 

Extensive examination of over 50 private bison herds across the U.S. has 

revealed domestic cattle mitochondrial and/or nuclear introgression in all except 1 herd 

using 12 of the nuclear microsatellites described by Ward (2000; James Derr 

unpublished data).  In private herds, the introgression event need not trace back to one of 

the foundations populations, since in the past several decades bison and cattle have been 

actively hybridized on private ranches for the production of a healthier meat alternative 

to pure domestic cattle.  The issue of bison “purity” has been contentious in both the 

private and public sectors.  For example, CSP has served as the source for many private 

ranch bison operations through yearly bison auctions.  Although CSP was once heralded 

as most likely formed from pure bison (Morris 1997), it has since been shown to contain 

around 20% domestic cattle mitochondrial DNA and evidence of nuclear introgression at 

several microsatellite markers (Ward et al. 1999; Ward 2000). 

The apparent success story of the recovery of the bison species in the past 150 

years is in jeopardy if domestic cattle introgression is widespread in bison populations.  

Hybrid species do not have taxonomic status and are not protected by the Endangered 

Species Act.  Widespread hybridization in other mammalian species has lead to 

proposals to delist such icons as the red wolf and Florida panther as endangered species 
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(Rhymer and Simberloff 1996).  One advantage of the bison situation compared with 

other examples of interspecies hybridization is that of sheer numbers.  Several closed 

bison populations, such as those maintained by the NPS and USFWS, exist that have not 

been investigated with genetic markers for detection of domestic cattle introgression.  As 

such, the goal of this study was to comprehensively examine bison from U.S. federal 

populations for evidence of mtDNA and nuclear DNA domestic cattle introgression 

using the previously developed methods of Ward et al. (1999) and Ward (2000).  If one 

or more of these populations do not demonstrate evidence of domestic cattle 

introgression using current genetic technologies, and do not share a history with those 

populations which do contain cattle introgression, they will likely become invaluable 

source(s) of “pure” bison germplasm.  As Polziehn et al. (1995) asserted, “Given the 

number of bison available to establish new herds, preference will most likely be given to 

animals with no evidence of hybridization.” 

   

Materials and methods 

DNA was isolated from liver, whole blood, and/or tail hair samples of bison from 

10 federal populations as described in Chapter II.  All PCR and sequence reactions were 

run on a GeneAmp PCR System 9700 thermal-cycler (PE Biosystems).  The mtDNA 

screen was performed as described by Ward et al. (1999) with minimal exceptions as 

follows (per 25 µl reaction): 50 ng template DNA or 1 FTA punch; 0.2 µM each primer; 

1× MasterAmp PCR Enhancer (Epicentre, Madison, WI); 400 µM dNTPs; 2.0 mM 

MgCl2; 1× reaction buffer; 1.0 units Taq DNA polymerase (Promega, Madison, WI).  
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The thermal parameters for the mtDNA screen were: 96°C 3 min; 4 cycles of 96°C 20 s, 

58°C 30 s (-1°C/cycle), 65°C 90 s; 26 cycles of 96°C 20 s, 54°C 30 s, 65°C 90 s; 1 cycle 

of 96°C 60 s, 54°C 60 s, 65°C 20 min.  Sequencing of the mtDNA D-loop was 

performed for bison with suspect domestic cattle fragments.  A 15,238-base pair (bp) 

fragment was amplified using the primers 12S (5’-AACAGGAAGGCTGGGACC-3’) 

and THR (5’-AGAGAAGGAGAACAACTAACCTCC-3’) located in the 12S ribosomal 

RNA and threonine tRNA genes, respectively, flanking either side of the bovine D-loop.  

Initial amplification was performed under the following conditions (per 50 µl reaction): 

100 ng template DNA; 0.12 µM each primer; 400 µM dNTPs; 3.5 mM MgCl2; 1× 

reaction buffer; 1.25 units AmpliTaq Gold® DNA polymerase (PE Biosystems, Foster 

City, California).  PCR products were cleaned using the QIAquick PCR Purfication Kit 

(QIAGEN Inc., Valencia, California).  Sequence reactions were performed using the 

Big-dye® terminator cycle sequencing kit version 2.0 (PE Biosystems) and an ABI377 

automated sequencer (PE Biosystems) with the THR and internal D811-R (770-bp from 

THR; 5’GGGGGAATTTTTATGGAGG-3’) primers. 

Sequences obtained in this study were compared with those produced by Ward et 

al. (1999) using ClustalX (Higgins and Sharp 1988) with the following alignment 

parameters: gap opening = 15; gap extension = 6.66; transition weight = 0.5.  

Phylogenetic Analysis Using Parsimony (PAUP* 4.0b2, Swofford 1999) was employed 

for parsimony analysis of the sequences through heuristic searches with the following 

options: unrooted starting trees obtained via stepwise addition; tree-bisection-

reconnection used as branch-swapping algorithm; branches collapsed when maximum 
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length = zero; bootstrapping on 50% majority rule consensus tree with 2000 replicates to 

test the strength of relationships among taxa. 

 From the 20 autosomal microsatellites, 15 were chosen for examination in this 

study based on the presence of introgression in other bison populations screened by 

Ward (2000) and allele size ranges for multiplexing.  Every chromosomal region where 

evidence of domestic cattle introgression was found in bison populations by Ward 

(2000) was included in this study.  The forward primer for each marker was labeled with 

1 of 4 fluorescent dyes (NED, 6-FAM, HEX, VIC; Applied Biosystems, Foster City, 

California).  Markers were multiplexed based on non-overlapping allele size ranges and 

dye types (Table 8).  Multiplexes A and B were designed by Todd Ward and Robert 

Schnabel.  Table 8 lists the confirming markers utilized in this study, which were run as 

singletons. 

All microsatellite amplification reactions were performed using the thermal 

parameters described above for the mtDNA screen.  PCR conditions for multiplexes A 

and C and all confirming markers were as follows (5 µl reactions): 50 ng template DNA 

or 1 FTA punch; 0.05 – 0.4 µM each primer; 1× MasterAmp PCR Enhancer; 400 µM 

dNTPs; 3.0 mM MgCl2; 1× reaction buffer; 0.375 units Taq DNA polymerase 

(Promega).  PCR conditions for multiplex B were as above with the exception of 1.6× 

reaction buffer. 

 All 15 nuclear diagnostic microsatellites were screened across all samples.  

Markers were rerun as singletons in individuals with suspect cattle-like alleles, with the 

same PCR protocols same as above with replacement of water for extra primer volume. 
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TABLE 8 

Primary diagnostic and confirming microsatellite markers used to detect nuclear 

domestic cattle introgression in bison 

 
Primary diagnostic and closely-linked confirming loci (in italics) are presented for 15 chromosomal 

regions.  Only those confirming loci used in this study are shown.  RA-BISON, called allele size range in 
bison based on the YNP and WC populations in this study and the results of Ward (2000); RA-DC, called 
allele size range in domestic cattle based on the results of Ward (2000) except for BMC3224 (see text);      

a, fluorescent dye label for forward primer; b, chromosomal position (cM) as reported in the USDA cattle 
gene mapping database; c, ILSTS065 does not amplify in bison due to the presence of a fixed null allele;     

d, the 95-bp BMS4040 allele was found by Ward (2000) only in the CSP population and presumed of 
bison origin based on the presence of bison-like alleles at a nearby locus 

 
 
 
 

 

 

Locus Labela Multiplex Chromosome Positionb RA-BISON RA-DC 

AGLA17 VIC A 1 0.0 215 214-219 
AGLA293 HEX C 5 32.0 218-220 218-239 
BM1314 6-FAM B 26 24.8 137 143-167 

HEL11 6-FAM   20.7 142-175 179-203 
BM4307 6-FAM C 1 35.2 185-187 183-199 

BMS4017 HEX   34.8 145-165 148-158 
BM4513 NED A 14 62.5 132-134 139-166 
BM7145 NED A 1 69.2 108-110 116-118 

INRA119 HEX   68.7 119-130 132-138 
BMS4008 6-FAM   71.7 158-164 152-179 

BMC3224 6-FAM B 29 43.6 176 182-190 
BMS2270 6-FAM A 24 21.2 66-70 80-98 

ILSTS065 HEX   25.2 nullc 131-143 
BMS4040 NED B 1 98.8 75, 95d 85-99 
CSSM36 VIC A 27 39.8 158 162-185 
CSSM42 NED B 2 34.4 167-171 173-217 
RM185 HEX C 23 45.1 92 90-108 
RM500 6-FAM A 5 55.6 123 125-135 
SPS113 VIC A 10 29.2 128-132 135-154 
TGLA227 VIC B 18 84.7 72-73 79-106 



70 

    

Individuals with suspect cattle-like alleles were then screened with the appropriate 

linked confirming marker (Table 8).  In populations where suspect domestic cattle alleles 

were identified, a small number of additional bison without the cattle-like allele at the 

diagnostic locus were screened for the same linked confirming marker.  

 
Results 

 A total of 3,378 bison from 10 federal populations were surveyed for evidence of 

domestic cattle introgression using both mitochondrial and nuclear loci (Table 9).  No 

samples were collected from SH, as discussed in Chapter II.  This survey represents 

approximately 49% (3378/6900; Table 9) of the total pool of bison from the 10 sampled 

populations.  Testing of all or nearly all bison from individual populations was 

performed when possible.  Complete sampling was not possible for the BNP (56.6%), 

GT (6.5%), WM (29.3%), and YNP (17.7%) populations. 

Of the 10 federal populations examined, evidence of domestic cattle mtDNA 

introgression was found only in those bison from NBR.  Of the 636 bison tested from the 

NBR population, suspect cattle D-loop fragments amplified in 11 bison (1.7%).  Of 

these, 2 were females (born in 1984, 1989) and 9 were males (1 each born in 1989, 1994, 

1998, 1999, 2000 and 3 born in 2002; 1 of unknown age).  The sex of one of the males 

was unknown at the time of collection and determined through amplification of the 96-

bp allele at the Y-chromosome locus INRA189 (see Chapter II, Appendix B).  D-loop 

sequencing was performed for 8 of the suspect bison, excluding the 3 males born in 

2002.  Sequence alignments revealed complete identity to the domestic cattle mtDNA 

haplotype (9*) found in NBR bison by Ward et al. (1999).  Likewise, parsimony analysis  
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TABLE 9 

Total number of bison sampled among 10 federal populations for mitochondrial 

and nuclear screen for domestic cattle introgression 

Population Censusa Total 

BNP 875 495 

FN 379 379 

GT 600 39 

NBR 350 636b 

NS 63 63 

TRN 312 312 

TRS 371 371 

WC 350 375b 

WM 600 176 

YNP 3000 532 

Sum 6900 3378 
 

See Table 1 for population abbreviations.  a, current approximate  
census population size, as estimated by individual herd managers.   
When possible, estimates are given of total census population size  
at time of collection for this study. b, collection taken over multiple 

years such that total collection is greater than given census size. 
 
 
 

produced a consensus tree similar to that detailed by Ward et al. (1999), with the 

domestic cattle haplotypes from NBR bison sharing a node with domestic cattle of 

various breeds and other haplotypes identified as resulting from bison-domestic cattle 

introgression. 

 Allele frequencies for each of the 15 diagnostic microsatellites utilized for the 

detection of domestic cattle introgression are shown in Table 10 by population, with 

comparative results presented by Ward (2000) for CSP (n = 39) and 5 domestic cattle 

breeds (n = 64 total) also shown.  One exception was BMC3224, where 96 independent 
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cattle samples representing more than 30 breeds were genotyped and used to estimate the 

domestic cattle allele frequencies reported in Table 10 (samples kindly provided by 

Christopher Seabury).  Suspect cattle-like alleles were detected in 4 of the 15 diagnostic 

microsatellites within the 10 tested federal bison populations as follows: WM - 8.86% 

frequency of BM1314 157-bp allele; BNP - 13.67%, FN - 13.51%, NS - 13.49%, TRN – 

16.34%, and TRS - 11.28% frequency of BM4307 197-bp allele; NBR - 3.78% and NS - 

1.59% frequency of BM7145 116-bp allele; BNP - 3.13% frequency of BMS2270 94-bp 

allele. 

 In every population where potential domestic cattle introgression was detected at 

a diagnostic locus, confirmation was obtained through the detection of domestic cattle 

alleles at a linked locus (Table 11).  For those populations with suspect cattle-like alleles 

at one or more diagnostic loci, the bison were divided into two classes: those with cattle-

like alleles and those with exclusively bison alleles.  Screening of the confirming locus 

was then performed on a subset of each class, with all bison in the former class screened 

when possible.  For instance, in the WM bison population, where the 157-bp suspect 

BM1314 cattle-like allele was found, the liked locus HEL11 was used to screen 7 bison 

with the cattle-like allele and 7 bison with exclusively bison alleles at the BM1314 locus.  

In the first class, all 7 bison were confirmed to have a cattle-like allele at the HEL11 

locus (187-bp).  In the second class, all 7 bison were confirmed to have bison alleles at 

the HEL11 locus (155-, 159-, and/or 161-bp).  That is, the presence of cattle-like alleles 

was confirmed with 2 linked loci in 7 bison from WM.  Similar results were found with 

other loci in all other screened populations.
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TABLE 10 

Allele frequencies for 15 diagnostic microsatellites 

 

AGLA17 BNP FN GT NBR NS TRN TRS WC WM YNP CSP AN HE HO SH TLH DC 

214            10.00 31.25 30.77 12.50 7.69 19.53 
215 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 98.70       
216                7.69 1.56 
219           1.30 90.00 68.75 69.23 87.50 84.62 78.91 

                  
                  

AGLA293 BNP FN GT NBR NS TRN TRS WC WM YNP CSP AN HE HO SH TLH DC 

218 100.00 100.00 100.00 99.27 100.00 100.00 100.00 96.47 100.00 100.00 96.20  40.63    10.83 
220    0.73    3.53   3.80   3.85   0.83 
222            25.00  3.85 4.17  5.83 
225                33.33 5.00 
226                11.11 1.67 
228            75.00 56.25 84.62 45.83 16.67 57.50 
230               29.17 16.67 8.33 
232               12.50 5.56 3.33 
236                11.11 1.67 
239             3.13 7.69 8.33 5.56 5.00 
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TABLE 10 CONTINUED 

BM1314 BNP FN GT NBR NS TRN TRS WC WM YNP CSP AN HE HO SH TLH DC 

137 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 91.14 100.00 95.90       
143                3.85 0.79 
145                3.85 0.79 
147            5.56 25.00    7.14 
153            5.56 31.25 3.85   9.52 
155            66.67 34.38 61.54 33.33 23.08 42.06 
157         8.86  4.10 16.67  34.62 58.33 42.31 29.37 
159            5.56    19.23 4.76 
163             6.25   3.85 2.38 
165               8.33  1.59 
167             3.13   3.85 1.59 

                  
                  

BM4307 BNP FN GT NBR NS TRN TRS WC WM YNP CSP AN HE HO SH TLH DC 

183            11.11     1.64 
185 59.49 82.11 94.87 89.26 77.78 74.26 71.74 90.22 65.52 100.00 75.60 22.22 12.50 16.67 9.09  11.48 
187 26.84 4.39 5.13 10.74 8.73 9.41 16.98 9.78 34.48  21.80  3.13    0.82 
189           2.60 11.11 37.50 54.17 54.55 19.23 36.07 
191             6.25 4.17 9.09 15.38 7.38 
197 13.67 13.51   13.49 16.34 11.28     55.56 40.63 25.00 22.73 38.46 36.07 
199               4.55 26.92 6.56 
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TABLE 10 CONTINUED 

BM4513 BNP FN GT NBR NS TRN TRS WC WM YNP CSP AN HE HO SH TLH DC 

132 93.78 94.20 96.15 99.59 90.48 84.18 100.00 74.51 95.35 82.88 67.90       
134 6.22 5.80 3.85 0.41 9.52 15.82  25.49 4.65 17.12 32.10       
139             3.13 7.69  3.85 3.13 
141                3.85 0.78 
143            30.00 31.25 3.85 16.67 23.08 21.09 
145            15.00 9.38 3.85  30.77 11.72 
147            5.00 15.63 38.46 37.50 7.69 21.09 
149            40.00 15.63 15.38 12.50 23.08 20.31 
151            5.00  11.54 25.00 3.85 8.59 
154             15.63  4.17  4.69 
160            5.00  15.38   3.91 
162             9.38   3.85 3.13 
164              3.85   0.78 
166               4.17  0.78 

                  
                  

BM7145 BNP FN GT NBR NS TRN TRS WC WM YNP CSP AN HE HO SH TLH DC 

108 76.27 87.00 98.72 91.00 88.89 87.10 67.08 66.12 100.00 82.26 71.80       
110 23.73 13.00 1.28 5.23 9.52 12.90 32.92 33.88  17.74 26.90       
116    3.78 1.59      1.30 90.00 96.88 65.38 95.83 88.46 87.50 
118            10.00 3.13 34.62 4.17 11.54 12.50 

                  
                  

BMC3224 BNP FN GT NBR NS TRN TRS WC WM YNP CSP AN HE HO SH TLH DC 

176 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00        
182                 4.17 
184                 53.65 
186                 27.08 
188                 14.58 
190                 0.52 
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TABLE 10 CONTINUED 

BMS2270 BNP FN GT NBR NS TRN TRS WC WM YNP CSP AN HE HO SH TLH DC 

66 12.12 34.34 30.77 76.60 40.48 7.41 26.11 43.77 64.20 31.85 47.40       
68 84.75 65.66 69.23 23.40 53.97 92.59 72.22 37.54 16.05 59.27 34.60       
70     5.56  1.67 18.70 19.75 8.88 15.40       
80             3.33 3.85   1.59 
82             23.33  33.33 11.54 14.29 
84             10.00 3.85 12.50 34.62 12.70 
86                7.69 1.59 
88            10.00  30.77   7.94 
90           2.60 10.00 26.67 11.54 12.50 26.92 18.25 
92            20.00  19.23 20.83 3.85 11.90 
94 3.13           5.00   4.17 7.69 3.17 
96             30.00    7.14 
98            55.00 6.67 30.77 16.67 7.69 21.43 

                  
                  

BMS4040 BNP FN GT NBR NS TRN TRS WC WM YNP CSP AN HE HO SH TLH DC 

75 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 98.70       
85             18.75 3.85 8.33 15.38 10.16 
87            5.00    3.85 1.56 
95           1.30 90.00 65.63 96.15 91.67 80.77 83.59 
97            5.00 3.13    1.56 
99             12.50    3.13 
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TABLE 10 CONTINUED 

CSSM36 BNP FN GT NBR NS TRN TRS WC WM YNP CSP AN HE HO SH TLH DC 

158 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00       
162            10.00 9.38 16.67 29.17 34.62 19.84 
167              8.33  3.85 2.38 
169             3.13 4.17   1.59 
171            5.00 12.50 4.17 12.50  7.14 
173            5.00 9.38 29.17  42.31 17.46 
175            20.00   8.33 7.69 6.35 
177                7.69 1.59 
179            55.00 43.75 33.33 16.67 3.85 30.16 
181            5.00 21.88  33.33  12.70 
185              4.17   0.79 

                  
                  

CSSM42 BNP FN GT NBR NS TRN TRS WC WM YNP CSP AN HE HO SH TLH DC 

167 69.22 77.95 55.13 62.25 62.26 54.38 63.78 67.39 35.34 58.50 63.5       
169 2.25  2.56 6.59   0.28 8.12 22.41 6.92 8.1       
171 28.53 22.05 42.31 31.17 37.74 45.62 35.94 24.49 42.24 34.58 28.4       
173             9.38  33.33  8.59 
175            15.00   4.17  3.13 
177              3.85 4.17 3.85 2.34 
179            30.00 12.50 23.08 37.50 34.62 26.56 
181             3.13  4.17  1.56 
193              7.69   1.56 
205             3.13 7.69 4.17 3.85 3.91 
207                3.85 0.78 
209               4.17  0.78 
211             3.13   3.85 1.56 
213            55.00 68.75 15.38 8.33 46.15 39.84 
217              42.31  3.85 9.38 
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TABLE 10 CONTINUED 

RM185 BNP FN GT NBR NS TRN TRS WC WM YNP CSP AN HE HO SH TLH DC 

90                7.69 1.61 
92 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 96.20 5.00     0.81 
94             3.57 19.23 8.33 3.85 7.26 
96            20.00 3.57  33.33  10.48 
98            10.00  11.54   4.03 

100           3.80 15.00 21.43 11.54 4.17 11.54 12.90 
102            30.00 60.71 34.62 20.83 30.77 36.29 
104            10.00 3.57 19.23 12.50 3.85 9.68 
106            10.00 7.14 3.85 16.67 42.31 16.13 
108               4.17  0.81 

                  
                  

RM500 BNP FN GT NBR NS TRN TRS WC WM YNP CSP AN HE HO SH TLH DC 

123 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00       
125                11.11 1.67 
127            10.00 34.38 15.38 12.50 38.89 22.50 
129              3.85   0.83 
131            20.00 6.25 19.23 12.50 50.00 19.17 
133            65.00 59.38 57.69 70.83  53.33 
135            5.00  3.85 4.17  2.50 
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TABLE 10 CONTINUED 

SPS113 BNP FN GT NBR NS TRN TRS WC WM YNP CSP AN HE HO SH TLH DC 

128    13.03 4.76             
130 85.34 65.24 38.46 56.35 61.11 53.92 62.22 54.27 67.54 44.83 70.50       
132 14.66 34.76 61.54 30.62 34.13 46.08 37.78 45.73 32.46 55.17 29.50       
135            5.00    11.54 3.17 
137            10.00 33.33  16.67  12.70 
139            20.00  15.38 12.50 19.23 12.70 
141             3.33  8.33  2.38 
143                3.85 0.79 
145              19.23  19.23 7.94 
147            10.00    19.23 5.56 
149            5.00 10.00 57.69 25.00  19.84 
151            50.00 53.33 7.69 29.17 26.92 33.33 
154               8.33  1.59 

                  
                  

TGLA227 BNP FN GT NBR NS TRN TRS WC WM YNP CSP AN HE HO SH TLH DC 

72 5.86 3.11 34.62 13.80 3.97 0.68 3.49 40.25 21.13 26.92        
73 94.14 96.89 65.38 86.20 96.03 99.32 96.51 59.75 78.87 73.08 100.00       
79                16.67 2.50 
83            15.00  3.85 16.67 22.22 10.00 
85             31.25  4.17  9.17 
90            5.00 3.13   5.56 2.50 
92            40.00 25.00 19.23 66.67 11.11 32.50 
94            15.00 28.13 19.23 4.17 5.56 15.83 
96            10.00 9.38 3.85 8.33 11.11 8.33 
98              3.85   0.83 

101            15.00 3.13 42.31  27.78 16.67 
106              7.69   1.67 

 
Frequencies given as percentages.  Suspect domestic cattle allele frequencies in bison populations are indicated in bold.  See Table 1 for population 

abbreviations.  All CSP, AN, HE, HO, SH, TLH, DC allele frequencies derived from Ward’s (2000) data with the exception of BMC3224. CSP, Custer 
State Park bison; AN, Angus; HE, Hereford; HO, Holstein; SH, Shorthorn; TLH, Texas Longhorn; DC, overall domestic cattle frequencies (based on 

AN, HE, HO, SH, TLH except for BMC3224)



 

               
    

80

TABLE 11 

Summary of testing and results for confirming loci by population 

 
See Table 1 for population abbreviations.  Results presented only for those populations with suspect cattle-like alleles at diagnostic loci (DL).  Bison 

from each population were divided into groups based on their DL genotypes: suspect (possessing cattle-like allele(s)) or non-suspect (bison-like alleles).  
Bison from each group were genotyped for the appropriate linked confirming locus (CL).  The domestic cattle and bison called allele sizes for each CL 

in each population are indicated (following Ward 2000).  CL tested, total number of bison tested in each DL class for the appropriate CL; CL cattle 
allele, the total number of tested DL suspect bison with a cattle-like allele at the CL; CL bison allele(s), the total number of tested DL non-suspect bison 

with exclusively bison-like alleles at the CL; a, BMS2270 does not amplify in bison due to the presence of a fixed null allele 
 

 

 

   DL suspect DL non-suspect 

Population Diagnostic 
locus (DL) 

Confirming 
locus (CL) 

Domestic cattle 
allele (CL) 

CL 
tested 

CL 
cattle allele 

Bison alleles (CL) CL 
tested 

CL 
bison allele(s) 

WM BM1314 HEL11 187 7 7 155, 159, 161 7 7 
BNP BM4307 BMS4017 154 123 121 155, 159, 161, 163 366 366 
FN BM4307 BMS4017 154 73 69 155, 159, 161, 163 211 211 
NS BM4307 BMS4017 154 16 15 153, 155, 159, 161, 163 46 46 

TRN BM4307 BMS4017 154 91 90 155, 159, 161, 163, 165 210 210 
TRS BM4307 BMS4017 154 76 76 153, 155, 159, 161, 163 289 289 
NBR BM7145 INRA119 132 45 45 124, 126, 128 12 12 

  BMS4008 166 45 44 160, 162 11 10 
NS BM7145 INRA119 132 2 2 124, 128 3 3 

  BMS4008 166 2 2 160, 162 3 3 
BNP BMS2270 ILSTS065 131 30 14 nulla 12 12 
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In some cases, a small number of bison had a cattle-like allele at one locus but 

not at the other, indicating recombination (e.g. NBR BMS4008; Table 11).  One notable 

exception is with the BMS2270/ILSTS065 screening pair for the BNP population, where 

less than 50% (14/30) of the tested bison were confirmed to have cattle-like alleles at 

both loci.  These results may be the product of recombination or genotyping error for the 

ILSTS065 locus, where the absence of a PCR product was interpreted as evidence of a 

bison-like (null) allele when in fact amplification failure would produce the same result.  

The ILSTS065 locus was co-amplified with BMS2270 in the secondary screen in an 

attempt to eliminate such genotyping error. 

 

Discussion 

This study has identified domestic cattle introgression in some, but not all, tested 

federal bison populations.  Those populations included in previous studies (Polziehn et 

al. 1995; Ward et al. 1999; Ward 2000) have been examined in much greater detail for 

both nuclear and mitochondrial loci, and the detection of domestic cattle introgression 

has been investigated for the first time in several federal bison populations through this 

study. 

 

Sources of domestic cattle introgression in U.S. federal bison populations 

 Of the 4 sources of bison stock used to found or supplement FN (Table 1), the 

most likely to have contributed the domestic cattle introgression observed today is either 

the private ranch in Nebraska or CSP, since the domestic cattle alleles found at BM4307 
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and BMS4017 are not found in either NBR or YNP bison (Table 10, 11; BMS4017 allele 

distribution for NBR and YNP based on data not presented here).  Bison from CSP also 

have domestic cattle introgression in the BM4307/BMS4017 region, although the alleles 

are of different sizes (Table 10; Ward 2000).  Furthermore, CSP and FN bison have 

demonstrated evidence of domestic cattle introgression at the linked PIT1-7B7 locus 

(Chromosome 1, 34.0 cM), with 139-bp alleles in both populations (Ward 2000).  These 

findings indicate CSP as the likely source of FN domestic cattle introgression.   

Although the allele frequency observed for the BM4307 197-bp allele (0.135) 

was substantially lower than that observed by Ward (2000) of 0.204, it is still much 

greater than the frequency of the BM4307 189-bp allele in CSP bison (0.026).  The 

higher frequency in the FN population observed by Ward (2000) was most likely due to 

small sample size error (n = 27, < 8% of the population census size of approximately 

350 – 400).  Drift and/or selection might also explain the observed differences in the FN 

samples collected in 1995 used by Ward (2000) and those from 2002 used in this study.  

However, neither of these natural forces would be expected to act in the significant 

manner necessary to explain these differences in such a relatively short time (< 2 

generations with a 4-year generation time in bison) with a population of consistently 

greater than 350 bison during the interim.   

As Ward (2000) pointed out, the presumed source of CSP for the observed 

domestic cattle introgression in FN bison is confounded by a lack of similar sized alleles 

between the two populations, but may be explained by the small sample size from the 

CSP population (n = 39).  That is, the BM4307/BMS4017 domestic cattle alleles found 
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in the FN population might actually be present, but as of yet undetected, in the CSP 

population.  Alternatively, these alleles might have been eliminated from the CSP 

population by random genetic drift since the introduction of CSP bison into FN in the 

1930s.  The bison from a private source in Nebraska used to found the FN bison 

population (Table 1) cannot be eliminated as a source of the observed domestic cattle 

introgression, since the history of this source is unknown.  

 The observation of the same BM4307/BMS4017 domestic cattle alleles in the TR 

bison populations as found in the FN population is expected based on the history of these 

populations (Table 1, 10, 11).  Notably, the TRN population has an approximately 44% 

higher frequency of the BM4307 compared to the TRS population (Table 10), consistent 

with differences observed using other microsatellite loci and the hypothesis of genetic 

drift acting more strongly in the TRN population based on a historically smaller census 

size than the TRS population (Chapter II). 

 Two separate regions of domestic cattle introgression are found in the BNP 

population (Table 8, 10, 11): one on chromosome 1 (BM4307/BMS4017) and the other 

on chromosome 24 (BMS2270/ILSTS065).  Similarity in allele size and frequency of 

BM4307 alleles with FN and TRS, the two original source populations for BNP, indicate 

the source of the chromosome 1 domestic cattle introgression was FN (Table 1, 10).  The 

BMS2270 94-bp domestic cattle allele, however, is not shared with either TRS or FN, 

and is presumably from the 1984 introduction of bison from Colorado of unknown origin 

(Table 1).  Ward (2000) also showed domestic cattle introgression in CSP bison in the 

BMS2270/ILSTS065 region.  The BMS2270 90-bp allele and ILSTS065 143-bp allele 
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found in CSP (Table 10, 11; Ward 2000) are different, however, from those found in the 

BNP population.  

 Ward et al. (1999) found 2.7% (3/113) of the tested bison from NBR had 

domestic cattle mtDNA, comparable to the 1.7% found in this study.    The NBR female 

with domestic cattle mtDNA born in 1984 was identified as 1 of the 4 females 

introduced from Maxwell State Game Refuge (MSGR; Table 1; Lindy Garner pers. 

comm.).  The other 3 females from this introduction were included in this study; all had 

a bison-type mtDNA.  However, none of these 4 females had the BM7145 116-bp cattle 

allele.  Furthermore, none of the bison identified as having domestic cattle mtDNA also 

had the BM1745 116-bp cattle allele.  These results indicate 2 independent domestic 

cattle introgression events in the NBR population.  The source of domestic cattle 

mtDNA introgression in NBR bison is MSGR, as corroborated by the following 

observations: all 9 bison with domestic cattle mtDNA sequenced in this study were 

identical to those found in NBR bison by Ward et al. (1999), including a single female 

from MSGR, and this haplotype was found to be identical between the two populations.   

Ward (2000) found the same domestic cattle alleles in the MSGR population as 

found in the NBR population for the BM7145/INR119/BMS4008 region (Table 10, 11), 

so it is somewhat surprising that MSGR could not be confirmed as the source of the 

domestic cattle introgression in this region.  Barring sampling error, the only explanation 

for this finding is a second source of domestic cattle introgression.  One possible way to 

narrow the timing of the introduction of domestic cattle introgression into the NBR 

population would be to sample bison from the Delta Junction population in Alaska, 
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which was founded exclusively from NBR bison in 1928 (see Chapter I).  The Delta 

Junction population would be a potentially important source of bison genetic variation if 

it does not share the domestic cattle introgression in this region with NBR. 

The NS bison population shares domestic cattle alleles in the BM4307/BMS4017 

region with FN and in the BM7145/INR119/BMS4008 region with NBR, as would be 

predicted based on the history of this population.  The NS population does not share 

BM1314 domestic cattle alleles with WM, from which 8 bison were used as NS founders 

(Table 1).  Since the frequency of the BM1314 157-bp domestic cattle allele in the WM 

population is only around 8.9%, it is entirely possible that this allele was not introduced 

into the NS population by pure chance alone, although drift or unequal contribution of 

founders might also explain this result. 

 Excluding the possibility of recent, undocumented introgression, there are only 2 

possible sources of the domestic cattle introgression observed in the BM1314/HELL11 

region in the WM bison population: the New York Zoological Park or FN (Table 1).  

Coder (1975) reported that one of the bulls from the New York Zoological Park was 

from the Jones herd, where hybridization experiments are known to have occurred 

(Chapter I).  Furthermore, the FN population was supplemented with CSP bison in 1935 

and 1937, just before the 1940 transfer of 2 bulls to WM.  Although domestic cattle 

introgression was not observed in the BM1314/HELL11 region in the FN population, the 

same alleles found in the WM population (157-bp and 187-bp, respectively) were found 

in the CSP population by Ward (2000; Table 10, 11).  These findings may be the result 

of genetic drift over the last 60 years to effectually eliminate the introgressed 
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BM1314/HELL11 region from the FN population and/or the introduction of a single bull 

directly from CSP (or an F1 of a CSP bull) to WM – through FN – that did not produce 

many, if any, offspring while at FN.  The later possibility seems likely based on the 

timing of the movement of bison from CSP to FN and from FN to WM (Table 1).   

Although it is not possible to completely exclude the possibility of domestic 

cattle introgression in any given bison population using the markers and methods in this 

study (see below), evidence of introgression was not found in the GT, WC, and YNP 

bison populations.  The presence of the BM4307 197-bp domestic cattle allele in the 

TRS population but not the GT population is surprising given the introduction of bison 

from TRS into the GT population in 1964 (Table 1).  The small sample size from GT 

may have precluded the detection of domestic cattle introgression at this locus.  It is also 

possible that the contribution of the TRS bison in the 1960s to the GT population was 

low enough that the allele in question was not maintained (genetic drift).  Further 

sampling from the GT population is necessary to resolve this issue. 

 

Statistical significance of detecting domestic cattle introgression 

Including the survey of Ward (2000), a total of 3,748 bison from 21 state and 

federal populations have been examined for evidence of both domestic cattle 

mitochondrial and nuclear DNA introgression.  Of these, 8 bison populations have been 

shown to be free of domestic cattle introgression for the markers utilized in this study 

(plains bison unless otherwise noted): Elk Island National Park (wood bison, n = 25), 

Canada; Mackenzie Bison Sanctuary, Canada (wood bison, n = 36); Wood Buffalo 



87 

    

National Park, Canada (wood bison, n = 23); Elk Island National Park (plains bison, n = 

25), Canada; Grand Teton National Park, Wyoming (n = 39); Henry Mountains, Utah (n 

= 21); Wind Cave National Park, South Dakota (n = 375); Yellowstone National Park, 

Wyoming (n = 560, including those from Ward 2000).  The confirmation of potential 

mtDNA introgression through sequencing and phylogenetic analysis and potential 

nuclear DNA introgression with linked markers makes the probability of a type I 

statistical error across a bison population negligible.  That is, the probability that a 

population identified using these techniques as having domestic cattle introgression 

actually does not is insignificant.  

Conversely, there is a chance that one or more of the 8 bison populations 

identified in this study or by Ward (2000) as being free of cattle DNA actually contain 

some level of domestic cattle introgression (type II statistical error).  This type of error is 

not difficult to imagine given the small portion of the bison genome under investigation 

with a 15 marker screen.  Many factors unique to each studied population play a role in 

the calculation of this probability, including the original frequency of introgression in 

founding stock, the number of generations since the foundation of the population, and 

the number of bison sampled.   

Alternatively, the probability of detecting introgression at a particular 

significance level (e.g. 0.1%, 1%, 5% population level of introgression) in a sample of 

size “N” with “n” loci fixed for different alleles in two species can be estimated using  

the equations set forth by Davis et al. (1988).  The logic behind these calculations is that 

although the probability of detecting domestic cattle introgression in a single bison after 
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several generations past the initial hybridization event is quite small, the probability of 

detecting of low levels of hybridization across a population is necessarily higher as more 

individuals are sampled.  With the 15 loci used in this study, the presence or absence of 

alleles in the range of domestic cattle alleles determines the detection of introgression as 

opposed to allele frequency differences for shared alleles between the two species; as 

such, these loci can be treated as “fixed” (Davis et al. 1988).   

Table 12 indicates the associated probabilities of detecting domestic cattle 

introgression assuming a hybrid ancestry for the population under investigation for 

various sample sizes and levels of detection using 15 loci and including the exact 

number of sampled individuals from GT, WC, and YNP in this study.  With these loci, 

the probability of detecting domestic cattle introgression at a 0.01% population level in 

the WC and YNP populations is > 99.99%.  In the GT population, however, the 

probability of detection at a 0.01% level drops to around 60%.  The method used here 

for estimating error rates is not perfect and makes several assumptions which may be 

violated in some bison populations, such as random mating and neutral evolution of 

domestic cattle genes in hybrid bison populations.  However, the probabilities presented 

in Table 12 can be taken as a rough estimate of the degree of confidence that can be 

placed on the conclusions of this investigation.  

 

Biological significance of detecting domestic cattle introgression 

 Hybridization between distinct populations, and in some cases species, is known 

to increase viability and adaptive response (Spielman and Frankham 1992; Arnold and  
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TABLE 12 

Probability of detection of domestic cattle introgression in bison 

 

Probabilities of detection are given for various combinations of sample sizes and levels of introgression of domestic cattle nuclear DNA.  Exact sample 
sizes for Wind Cave National Park (WC) and Yellowstone National Park (YNP) are shown.  This study did not find evidence of domestic cattle 

introgression in either the WC or YNP bison populations. 

 SAMPLE SIZE 

% Introgression GT 
39 50 100 150 200 300 WC 

375 
YNP 
532 700 800 

5% 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
1% 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

0.1% 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
0.01% 0.6078 0.6988 0.9093 0.9727 0.9918 0.9993 0.9999 1.0000 1.0000 1.0000 

0.001% 0.0894 0.1131 0.2134 0.3023 0.3812 0.5132 0.5934 0.7211 0.8136 0.8534 
0.0001% 0.0093 0.0119 0.0237 0.0354 0.0469 0.0695 0.0861 0.1199 0.1546 0.1747 

0.00001% 0.0009 0.0012 0.0024 0.0036 0.0048 0.0072 0.0090 0.0127 0.0167 0.0190 
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Hodges 1995), even when the original hybridization is disadvantageous (Lewontin and 

Birch 1966), as in the case of domestic cattle and bison.  Since bison and domestic cattle 

do not naturally hybridize, and there are clear negative fitness consequences in at least 

the F1 generation, it seems plausible that the introgression and of domestic cattle genes 

into bison germplasm might also be under negative selection.  The maintenance of 

introgressed domestic cattle regions for 15 – 20 generations post-hybridization in the 

federal populations examined in this study suggests that any negative fitness effects, at 

least in these regions, is minimal.  However, the location of genes and their respective 

functions within and near the 15 nuclear regions examined in this study are largely 

unknown; it is therefore not possible at this point to directly investigate the involvement 

of natural selection on domestic cattle introgression in these regions. 

Of the 3 populations identified in this study as free of domestic cattle 

introgression (GT, WC, YNP), WC and YNP are among the 4 populations identified in 

Chapter II as having the most contribution to overall bison genetic variation in federal 

populations.  It is unknown whether relative contribution to overall bison variation in the 

NBR and WM populations is truly due to bison variation or the addition of domestic 

cattle alleles into these populations. By the same reasoning, it seems particularly 

providential that WC and YNP would by far have the highest contribution to allelic 

richness among the studied populations (Figure 4).  Assuming neutral selection on 

introgressed cattle genomic fragments, those populations with observed domestic cattle 

introgression should logically have more genetic variation among the federal 
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populations.  The findings of this study oppose this expectation and raise concern as to 

the possible negative effect of domestic cattle introgression on bison fitness. 

The examination of multiple related populations has allowed for resolution of 

some of the hypotheses previously set forth by Ward (2000).  For instance, Ward (2000) 

suggested a possible association between the frequency of domestic cattle introgression 

at the PIT1 7B7 locus, a growth factor hormone gene located in the BM4307/BMS4017 

region, and nonrandom selection based on size and conformation characteristics in FN 

bison.  Ward (2000) found identical allele frequencies for the PIT1 7B7 139-bp domestic 

cattle allele and the domestic cattle alleles at linked the BM4307 and BMS4017 loci in 

the FN population.  For at least 20 years, the FN bison population was under artificial 

selection for physical size during yearly roundups (Chapter I).  Similar frequencies of 

the domestic cattle BM4307 197-bp allele were found in the FN, TRS, and BNP 

populations (Table 10).  Neither of the latter 2 populations are known to have been under 

any type of direct artificial selection during their history.  Since the TRS and BNP 

populations were founded from FN stock in the 1950s and 1960s before the documented 

artificial selection in the FN population (1970s – 1990s), the relatively high frequency of 

the BM4307 197-bp domestic cattle allele and adjacent growth hormone locus in the FN 

population is most likely due to initial allele frequency and not artificial selection. 

 

Management implications 

This study has identified at least 3 federal bison populations with presumed 

multiple sources of domestic cattle introgression: BNP, NS, and NBR.  The importance 
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of utilizing both mtDNA and nuclear loci for the detection of hybridization and 

introgression was predicted by Rhymer and Simberloff (1996) and is substantiated in 

this study with results from the NBR population; without both the mtDNA and nuclear 

loci, the true extent of introgression in this population would have been underestimated.   

These results also emphasize the importance of the warning given by Simberloff 

(1996) to use extreme caution when purposely mixing individuals from populations, 

especially when interspecies hybridization is a possible compounding issue.  In the case 

of both the BNP and NBR populations, the observed domestic cattle introgression was in 

part due to additions made to these populations in the 1980s under the honorable 

auspices of increasing genetic diversity and limiting inbreeding depression.  Although 

the management decisions were made in good faith and at the time nothing was known 

about the incidence of domestic cattle introgression in bison populations, no genetic 

research was actually conducted prior to the introductions to determine if the perceived 

problems of low variation and inbreeding were real.  There are likely other species and 

populations which have been influenced in similar ways by widespread conservation 

efforts to mix isolated populations as much as possible for the maintenance of natural 

variation.  The purposeful mixing of populations, especially those that are highly 

fragmented and isolated through direct human influence, is extremely important in the 

maintenance of genetic diversity to prevent the potentially negative impacts of forces 

such as genetic drift; however, management decisions based on these criteria should 

obviously be made with caution and the best available tools and resources.    
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In the future, the possibility of domestic cattle introgression should be given high 

priority in management decisions involving the movement of bison among populations, 

especially those that are under governmental protection for the long-term conservation of 

the bison species.  At this point, it is virtually impossible to completely rid any of the 7 

populations described in this study from all domestic cattle introgression.  It is possible, 

however, to eliminate currently detectable domestic cattle introgression from these 

populations.  This management strategy has at least 3 limitations.  First, with the 

exception of NS, these hybrid populations have been in existence for a minimum of 40 

years, representing a maximum of 10 generations, during which time equilibrium 

between genetic constitution and environment has likely been met.  The elimination of 

detectable domestic cattle introgression may disrupt this equilibrium and cause at least 

short-term fitness consequences.  Second, the culling of these identified bison would be 

far from random and may eliminate important bison alleles from a given population.  

Lastly, this would be a very costly endeavor involving years of testing beyond the scope 

of this study to ensure the detectable cattle introgression is eliminated.  Furthermore, 

only detectable hybridization would be eliminated in populations where undetected 

regions of domestic cattle introgression are likely based on their hybrid ancestry, but not 

possible to identify without virtually complete genome sequencing.  Some alternatives to 

the “hybrid reduction” management strategy are discussed in Chapter VI.  

For the 3 populations without evidence of domestic cattle introgression, a 

different variety of management decisions will be important in the future, mostly 

involving the maintenance of current variation and precautionary measures against 
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future possibility of domestic cattle introgression.  For instance, the WC bison 

population shares a fence with CSP, where domestic cattle introgression has been 

detected at both nuclear microsatellite and mtDNA loci (Ward et al. 1999; Ward 2000).  

Occasional escapees have been known to enter the WC property through broken fences, 

although resourceful herd managers and differences in identification systems between 

the two populations have thus far allowed for quick and accurate removal of CSP bison 

from WC property (Barbara Muenchau pers. comm.).  The importance of maintaining 

the WC population in isolation from the neighboring CSP population is underscored by 

the results of this study. 

In conclusion, this study has assessed levels of domestic cattle introgression in 10 

federal bison populations and identified at least 2 populations, WC and YNP, which at 

this time do not have any evidence of domestic cattle introgression and also have high 

levels of unique genetic variation in relation to other federal populations.  As such, these 

populations should be given conservation priority and be maintained in isolation from 

those populations identified in this study and by Ward (2000) as containing domestic 

cattle introgression.  
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CHAPTER IV 

THE LEGACY OF CHARLES GOODNIGHT:  

CONSERVATION GENETIC ANALYSIS OF THE TEXAS STATE BISON 

HERD  

 

“In making contract with you to dispose of my ranch through the Goodnight American 
Buffalo Ranch Co., I do so for the reason that I am getting too old to give it the 

necessary attention without overtaxing my energies and that I hope and expect that it 
will be perpetuated and fill a unique page in the history of a generation yet unborn.” 

— Charles Goodnight (letter to H. A. Fleming 1910) 

 

Introduction 

 The Texas State Bison Herd (TSBH) is the only known direct descendent of the 

bison herd established by Charles Goodnight in the 1880s.  The TSBH has remained a 

small (n < 100) closed bison population for the past 120 years since its foundation with 5 

wild bison.  In 1997 the herd was donated to Texas Parks and Wildlife (see Chapter I for 

a historical review).   

There are likely few bison populations worldwide managed as closely as the 

TSBH, which receives supplemental feed, yearly vaccinations, and almost daily 

monitoring by state biologists.  The bison are not afflicted with any known ungulate 

disease (Danny Swepston pers. comm.).  Nevertheless, the TSBH is suffering from low 

natality and high mortality rates compared to other captive bison herds.  From 1997 – 

2002, the natality rate (number of calves/adult female/year) averaged 39.2% (Swepston 

2001; Table 13).  In comparison, Berger and Cunningham (1994) reported
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TABLE 13 

Average age, census population size, mortality rate, and natality rate estimates from the Texas State Bison Herd 

Year Average Agea Census Sizeb <1 Yr Mortalityc >1 Yr Mortalityd Natalitye 

1997 3.56 36 3/4 (0.750) 5/36 (0.139) 4/21 (0.190) 
1998 4.50 32 2/4 (0.500) 3/32 (0.091) 4/17 (0.235) 
1999 5.35 31 7/11 (0.636) 2/31 (0.065) 11/15 (0.733) 
2000 5.73 33 1/4 (0.250) 1/33 (0.030) 4/17 (0.235) 
2001 6.23 35f 3/10 (0.300) 0/35 (0.000) 10/16 (0.625) 
2002 6.20 40 4/5 (0.800) 0/40 (0.000) 5/15 (0.333) 

TSBH average (small herd)   0.539 0.055 0.392 
Captive bison average (large herd)g   0.042 0.032-0.042 0.600 

 
a, Exact ages unknown for animals born before 1997, and figured conservatively as either yearlings or adults (3+). This skews the average  
age of the herd below actual age, but does not change the average increase in age over 6 years; b, Census size before death and birth for  
given year; c, Ratio given as number of deaths / number of calves born up to 1 year in age; d, Ratio given as number of deaths / number  

total bison >1 year in age; e, Ratio given as number of births / number of total adult females ages 3+; f, 2 steers donated to Armand Bayou  
Nature Center  (Houston, Texas); g, Derived as conservative estimates from Berger & Cunningham (1994); mortality rate for age classes  

0-2 reported as 0.042 and for ages 3 or more as 0.032 per year 
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approximately 60% natality at BNP over a 5 year study period and Meagher (1973) 

estimated a natality rate of 52% in YNP bison.  TSBH mortality rates from 1997 – 2002 

averaged 53.9% for calves, which is significantly higher than the 4.2% calf mortality 

rate previously reported, while the average 5.5% mortality rate for TSBH bison older 

than one year is only slightly higher than the 3.2 – 4.2% previously reported (Berger and 

Cunningham 1994; Table 13).  Consequently, the census population size has only 

increased from 36 to 40 bison over the past 6 years, and the average age of the 

population has risen by 2.64 years (Swepston 2001; Table 13). 

 In 2000, 8 mature (> 3 years old) bulls were fertility tested using 

electroejaculation (Genetic Resources International, Navasota, Texas).  Of these, 4 

exhibited normal sperm motility and morphology, while the remainder had abnormalities 

outside acceptable baseline ranges including low motility, bent tails, and detached heads 

(Danny Swepston pers. comm.).  Although some abnormal readings are expected from a 

single collection on bulls never before worked for fertility testing, the semen 

characteristics are certainly suggestive of fertility problems in the TSBH.  In December 

2001, all 18 adult female bison were pregnancy tested using the pregnancy specific 

binding protein test (Texas Veterinary Medical Diagnostic Laboratory, College Station, 

Texas).  Results indicated that 15 bison (~83%) were pregnant.  From these apparent 

pregnancies, 5 calves were born and only 1 survived into 2003 (Danny Swepston pers. 

comm.), confirming the trend of poor recruitment in this herd.  As such, it is probable 

that male infertility and the inability of females to carry pregnancies to term are 
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negatively affecting the recruitment and population growth rates observed in the TSBH 

over the past 6 years. 

 Charles Goodnight was a cattleman and rancher by nature, and was 

internationally famous for breeding bison to Angus domestic cattle (Bos taurus) in an 

effort to produce a more robust and hardy beef breed (Goodnight 1914; Haley 1949).  

Evidence of introgression is still present in the descendants of Goodnight’s original 

experiments, as domestic cattle mtDNA was found in 6 of the original 36 TSBH 

members (population abbreviation JA; Ward et al. 1999; Ward 2000).  Subsequent 

genetic testing demonstrated both a unique bison mitochondrial type and distribution of 

nuclear alleles in the TSBH compared with various wood and plains bison herds (Ward 

2000).  The unique genetic composition in the TSBH is further indicated by the presence 

of private alleles and high pairwise FST values compared with those between tested 

federal bison populations (Table 4, 6).  Furthermore, both genetic distance measures 

utilized in Chapter II indicate more genetic difference between TSBH and YNP, the 

closest genetic neighbor, than found in any of the pairwise distance comparisons 

between the 10 federal bison populations examined (Table 7). 

 The noted low levels of genetic variation in the TSBH compared with other bison 

populations (Table 4; Figure 2) combined with chronic small population size, low 

recruitment, and high juvenile mortality observed in this population indicate the TSBH 

may be in danger of extinction.  As such, the purpose of this study was to investigate 

past and future genetic consequences of current population trends in the TSBH.  

Parentage analysis was performed on calves born from 1998 – 2001 to develop an 
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understanding of the breeding system in the TSBH and directly measure effective 

population size.  Additionally, differences in genetic variation between adult and calf 

groups were measured.  A stochastic model was developed to simulate the effects of 

current natality and mortality rates on population size, genetic diversity, and 

heterozygosity in the TSBH over the next 100 years.  The model was designed to further 

simulate the importation of bison males into the TSBH to investigate potential effects of 

increased fitness and introduction of new allelic variation on long-term census 

population size, genetic diversity, and heterozygosity. 

 

Methods and results of genetic analysis 

 Sample collection, DNA extraction, and multiplexed PCR was performed as 

described in Chapter II for 19 male and 21 female bison from the TSBH.  This collection 

represents the entire population as of December 2001.  One additional calf was born in 

2002 and several have recently been born in 2003 (Danny Swepston pers. comm.).  A 

total of 54 polymorphic nuclear microsatellite loci were genotyped to 100% completion 

(Table 2). 

 Likelihood-based parentage testing was performed using CERVUS 2.0 (Marshall 

et al. 1998) with the following analysis parameters: 10,000 cycles, 1% genotyping error 

rate, 80% relaxed confidence, and 95% strict confidence.  Parentage was established 

with confidence for offspring born from 1998 – 2001, revealing that 5 bulls and 11 cows 

produced the 15 tested progeny.  The average number of offspring was 3.00 ± 2.12 SD 

for the males and 1.36 ± 0.45 for the females.  The bull producing the most progeny 



100 

    

sired 6 offspring (40%) while the most number of offspring per cow was 3 (20%).  All 5 

males that sired offspring were fertility tested in 2000.  Semen samples from 4 of these 

males displayed normal motility and morphology.  The fifth sample had normal motility, 

but exhibited morphological abnormalities. 

Additionally, observed heterozygosity and number of alleles per locus were 

compared between the TSBH calves born from 1998 – 2001 (n = 15) and extant adults (n 

= 25) for the 51 autosomal loci.  The adult group averaged 38.7% heterozygosity and 

2.61 alleles/locus, while the calf group averaged 35.2% heterozygosity and 2.41 

alleles/locus, although the differences were not statistically significant (unpaired t-test, p 

> 0.001).  There is a 7.6% difference in the total number of alleles present in the current 

adult population (131 alleles) but absent from the 1998-2001 calf population (121 

alleles). 

 

Model description 

The stochastic model simulates changes in census population size, 

heterozygosity, and genetic diversity based on a 1-year time step using Visual Basic® 6.0 

(Microsoft®).  The initial conditions of the model include sex, age, and genotype at each 

of 51 unlinked autosomal microsatellites for the 40 extant bison from the TSBH as of 

December 2001.  Females and males in the model are considered potentially 

reproductive from 3 – 13 years and 4 – 14 years of age, respectively (Berger and 

Cunningham 1994).  Following observed competition and breeding success among 

males, when a 7 – 12 year-old male exists in the simulated populations, those younger or 
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older do not mate in a given year (Berger and Cunningham 1994).  Each time step 

(year), the age of each bison is advanced and potential breeders recalculated.  Females 

and males are selected and paired randomly from the potential breeding pool.  For each 

locus, an allele from each parent is randomly chosen and assigned to the offspring.  The 

offspring sex ratio is 1:1, as is generally found in closed bison populations (Berger and 

Cunningham 1994; Swepston 2001). 

 “Small herd demography” natality and mortality rates were calculated from 

TSBH data from the past 6 years (Table 13).  “Large herd demography” natality and 

mortality rates were taken as conservative estimates of those calculated by Berger and 

Cunningham (1994), with the mortality rate for age classes 0 – 2 years of 4.2% per year 

and for age classes 3+ years of 3.2% per year.  In the model, natality rates are applied to 

potentially breeding females such that under the small herd demography scenario, for 

instance, 39.2% of the 3 – 13 year-old females are randomly selected to mate and 

produce offspring.  Once bison reach 20 years of age, the mortality rate is assumed to be 

50%, based on the rarity of bison in captive populations that survive much past this age.  

Furthermore, a mortality rate of 100% is applied to any bison that reach the age of 30 

during the simulation.  When the census population size is greater than 200 bison, excess 

calves are randomly culled so as to keep the population from exceeding the approximate 

carrying capacity at CCSP. 

 Several possible scenarios were evaluated concerning the potential importation 

and subsequent reproduction of male bison into the TSBH.  A random number generator 

was used to select individuals from 142 male YNP bison.  Three distinct sets of 3 bison 
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(9 total) were chosen and completely genotyped for the same 51 microsatellite loci 

utilized for the TSBH.  All males are imported in the model as 7 year-olds (breeders).  

Breeding may occur either randomly with replacement, with one male mating all 

potential females in a given year with replacement the following year, or with 3 

imported males breeding all potential females during the year of importation followed by 

random mating of all potentially breeding males (native and imported) in all subsequent 

years.  Migration occurs with either 3 males imported into the population in year 1 or 

with 9 males total imported at a rate of 3 males every 5 years (importation of 3 males in 

years 1, 6, and 11).  In general, fitness was assumed to increase following the 

importation of new bison into the TSBH, as reflected by birth and death rates (Lewontin 

and Birch 1966; Spielman and Frankham 1992).  Unless otherwise noted, 20 replicates 

were used in each evaluation and averages were taken for each year across all replicates 

for the parameters of interest. 

 

Model evaluation 

Choice of particular males for importation 

To examine the sensitivity of the model to the choice of particular imported bison, 

comparisons were made among simulations of 3 groups of 3 bison each from YNP.  In 

each case, the 3 bison were imported into the population in year 1 and allowed to mate 

all potentially breeding females preferentially, with random mating of all imported and 

native males in every subsequent year.  No further assumptions were made regarding the 
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fitness of the imported males versus the original TSBH males, and large herd natality 

and mortality rates were used (Table 13).   

Currently, there are a total of 133 alleles in the TSBH for the 51 nuclear 

microsatellite loci tested.  The addition of the 3 bison from group 1 adds 62 new alleles 

to the population, while group 2 adds 67 new alleles and group 3 contributes 63 new 

alleles.  Figure 6 illustrates differences in heterozygosity and the total number of alleles 

for the 51 markers in question over 100 years with each of the 3 sets of imported males.   

Differences among average values for heterozygosity and number of alleles at 50 and 

100 years between the 3 groups were tested using analysis of variance (ANOVA).  

Average heterozygosity at 50 and 100 years and number of alleles present at 100 years 

were not significantly different between the 3 groups (p > 0.05).  However, the average 

number of alleles at 50 years between the 3 groups was significantly different (p < 0.05). 

Differences in 50-year average number of alleles were further tested using Tukey’s HSD 

(absolute difference) test, which revealed that the differences between groups 1 and 3 

were non-significant (p > 0.05) while the other pairwise comparisons showed significant 

differences (p < 0.05).  Percent differences between initial and final (100 year) values for 

total number of alleles are -15.0% (1), -14.3% (2), and -14.5% (3) and for heterozygosity 

are -12.0% (1), -16.0% (2), and -14.3% (3).  Therefore, it appears that heterozygosity 

and genetic diversity are not substantially influenced after 100 years by our choice of 

one particular group of bison over another for simulation of importation into the TSBH.  

In further analyses involving the importation of only 3 bison into the model, group 1 was 

used since this group contributes the least number of new alleles into the TSBH and is 
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Figure 6. —Evaluation of the effects of male choice for importation on the TSBH genetic simulation model.  Total number of 

alleles and heterozygosity (%Het) are compared each year among 3 groups of 3 imported males each. 
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therefore likely to provide conservative estimates of predicted changes in heterozygosity 

and genetic diversity. 

 

Effects of natality and mortality rates 

 To examine the sensitivity of population size and genetic variation to changing 

demographic parameters within the model, the potential effects of natality and mortality 

rates on population size, genetic diversity, and heterozygosity were examined.  Using 

both calculated and previously published rates as a guide, the effects of natality rates 

ranging from 40 – 60% and calf mortality rates ranging from 5 – 50% were calculated 

(Series A – F; Table 14).  Since mortality rates for those bison > 1 year of age in the 

TSBH are similar to previously published reports, large herd mortality rates for age 

classes > 1 year were used in these evaluations.  Each evaluation assumed random 

mating and no migration.   

All of the 120 simulated populations (6 series with 20 simulations each) survived 

to 100 years.  Average population size, total number of alleles, and heterozygosity 

values for each year for each series of simulations are graphed in Figures 7, 8, and 9, 

respectively.  Although the mean population size trajectory of each series eventually 

reaches n = 200, the population growth rates are clearly different among the series.  The 

year that each simulation reached n = 200 was calculated and averaged across all 20 

iterations for each series, and shown in Table 14 as the average time to reach carrying 

capacity.  The differences among series in average time to carrying capacity are 

significant (ANOVA, p < 0.05).
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TABLE 14 

Summary results for evaluation of the effects of mortality and natality rates on the TSBH model 

Series Natality 
Rate 

Calf Mortality 
Rate 

Average Year 
n = 200 

Growth Rate 
(bison/year)a 

Average Total 
Number of Alleles 

Average 
Heterozygosity 

A 0.6 0.05 14.8 ± 1.5 10.9 120.0 ± 4.2 34.4 ± 2.2 
B 0.5 0.05 18.8 ± 2.9 8.4 120.9 ± 3.0 34.1 ± 2.1 
C 0.4 0.05 27.0 ± 5.4 5.7 120.7 ± 3.5 34.2 ± 1.3 
D 0.6 0.50 54.6 ± 18.8 1.9 118.1 ± 4.3 33.4 ± 1.3 
E 0.6 0.35 27.0 ± 8.6 5.9 119.8 ± 4.2 33.7 ± 1.6 
F 0.6 0.20 18.5 ± 2.0 8.5 121.1 ± 4.7 34.2 ± 1.8 

 
Model evaluation conditions include large herd mortality rates for bison > 1 year in age, no migration, and random  

mating.  Summary statistics include average time to reach carrying capacity (n = 200), growth rate, genetic diversity 
 (total number of alleles), and heterozygosity after 100 years.  a, slope of regression line of average population size  

up to average year that population reaches n = 200 
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Figure 7. —Evaluation of the effects of mortality and natality rates on population size in the TSBH genetic simulation model.  

The various series of simulations with different natality and calf mortality rates are compared.  Model evaluation conditions 

include large herd mortality rates for bison > 1 year in age, no migration, and random mating. 
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Figure 8. —Evaluation of the effects of mortality and natality rates on total number of alleles in the TSBH genetic simulation 

model.  The various series of simulations with different natality and calf mortality rates are compared.  Model evaluation 

conditions include large herd mortality rates for bison > 1 year in age, no migration, and random mating.  
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Figure 9. —Evaluation of the effects of mortality and natality rates on heterozygosity in the TSBH genetic simulation model.  

The various series of simulations with different natality and calf mortality rates are compared.  Model evaluation conditions 

include large herd mortality rates for bison > 1 year in age, no migration, and random mating.  
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The average growth rate of the population for each series was calculated as the 

slope of the regression line of the average population size for each treatment from year 0 

until the average population reached n = 200 individuals.  Growth rates, average genetic 

diversity (total number of alleles), and average heterozygosity in year 100 for the various 

natality and mortality treatments are shown in Table 14.  The finite growth rate of 

approximately 10.9%/year for series A models that observed in the Badlands National 

Park bison population of 10.8%/year before systematic yearly culling began in 1972 

(Berger and Cunningham 1994).   

The results of these analyses indicate that population growth is more sensitive to 

changes in calf mortality rates than to changes in natality rates.  Series C approximates 

the current natality rate at the TSBH (40%), but includes a considerably reduced calf 

mortality rate (5% vs. ~50%), while series D approximates the calf mortality rate of 50% 

in the TSBH, but improves the natality rate (60% vs. ~40%; Table 13).  Figure 7 clearly 

shows a difference in the rate of growth and the average time to reach carrying capacity 

between these two series (5.7 vs. 1.9 bison/year and 27.0 vs. 54.6 years for series C and 

D, respectively; Table 14).  Furthermore, if only these 2 series are considered, the 

difference in the average total number of alleles in year 100 is statistically significant 

(two-tailed t-test, p < 0.05; difference in average heterozygosity not significant, p > 

0.05).  As such, it seems that genetic diversity and population growth rate are more 

sensitive to reductions in calf mortality rates than to increases in natality rates in this 

population.  Similar conclusions have been made through modeling Sage Grouse  
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populations, where individual survival was found to have a larger impact on population 

persistence than fecundity (Johnson and Braun 1999).    

 

Model Use 

The model was used to evaluate 7 different mating and migration scenarios (Table 15).  

Average population size, genetic diversity, and heterozygosity comparisons are shown in 

Figures 10, 11, and 12, respectively.  Under the first scenario mating was assumed 

random, natality and mortality rates were as calculated from the TSBH records (small 

herd demography), and no bison were imported into the population.  On average, the 

population went extinct in 47.9 years ± 12.2 SD (rate based on extinction of one or both 

sexes).  Of the 20 iterations, none of the populations survived to 100 years.  

Consequently, the standard deviations for calculations of population size, total number 

of alleles, and heterozygosity become quite large after 50 years; therefore, averages for 

these parameters were calculated based on the surviving populations each year only up 

to 50 years.  Average calculations of census size, genetic diversity (total number of 

alleles), average heterozygosity, average age, and number of fixed loci from the first 

scenario are shown in Table 16.  This evaluation indicates that within 21 years, 10% of 

the original genetic diversity within the TSBH will be lost (measured between initial 

total number of alleles and the total number of alleles remaining in a given year).   

The second scenario was similar to the first except that one male was randomly 

chosen to mate all potentially reproductive females in a given year.  This scenario was
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TABLE 15 

Description of management scenarios evaluated for the TSBH genetic model 

 
a, 50% natality rate, 29% calf mortality rate, 4.85% mortality rate for age classes 1 – 2 and 4.35% mortality rate for age classes 3+ 

 

Scenario Description Mating Demography Importation 

1 Baseline Random  
(7 - 12 year-old male mate preference) Small herd None 

2 Single male One 4 - 14 year-old male mates all females in 
given year with replacement Small herd None 

3 Artificial insemination Random  
(7 - 12 year-old male mate preference) 

Large herd natality 
Small herd mortality None 

4 3 migrants with  
random mating 

Random  
(7 - 12 year-old male mate preference) Large herd 3 males in 1st year 

5 3 migrants with 
preferential mating 

migrants mate all females in year of importation, 
random mating otherwise Large herd 3 males in 1st year 

6 9 migrants with 
preferential mating 

migrants mate all females in year of importation, 
random mating otherwise Large herd 3 males in years 1, 6, 11 

7 9 migrants with average 
natality & mortality 

migrants mate all females in year of importation, 
random mating otherwise Half fitnessa 3 males in years 1, 6, 11 
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Figure 10. —Comparison of average population size among 7 management scenarios for the TSBH genetic simulation model.  

See Table 15 for details of each scenario.  Averages for scenarios 1 and 2 were only calculated to 50 years, after which the 

majority of simulated populations were extinct (averages taken each year from only those populations where n > 0).   
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Figure 11. —Comparison of total number of alleles among 7 management scenarios for the TSBH genetic simulation model.  

See Table 15 for details of each scenario.  Averages for scenarios 1 and 2 were only calculated to 50 years, after which the 

majority of simulated populations were extinct (averages taken each year from only those populations where n > 0).   
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Figure 12. —Comparison of heterozygosity among 7 management scenarios for the TSBH genetic simulation model.  See 

Table 15 for details of each scenario.  Averages for scenarios 1 and 2 were only calculated to 50 years, after which the majority 

of simulated populations were extinct (averages taken each year from only those populations where n > 0).   
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designed to model the effects of one or a few males used preferentially to breed females 

within a population, as is a common practice in private bison populations and has 

recently been employed in the TSBH in an effort to improve recruitment rates (Danny 

Swepston pers. comm.).  As with scenario 1, all 20 simulations were extinct by year 100.  

In scenario 2, 10% of the original genetic diversity within the TSBH is lost within 18 

years.  The average age of the population at 50 years is 14.1 ± 3.1 years, which is 

comparable to the average of 14.0 ± 3.8 years from scenario 1 (Table 16; averages not 

significantly different using two-tailed t-test, p = 0.9278). 

To simulate the possible effects of artificial insemination in the TSBH, the third 

scenario included an increased natality rate of 60% from the baseline conditions, random 

mating, and no migration.  Under this scenario, mortality rates were assumed to remain 

the same as those currently found in the TSBH.  The high incidence of calf mortality 

 
 

TABLE 16 

Summary of simulated scenario 1 population characteristics after 50 years 

Year Census 
Size 

Total Number 
of Alleles 

Average % 
Heterozygosity 

Average 
Age 

Total Number of 
Fixed Loci 

0 40 133 37.0 6.20 5 

10 39.9 ± 6.7 129.7 ± 3.0 36.4 ± 1.1 9.7 ± 0.9 5.7 ± 0.7 

20 23.9 ± 8.8 120.5 ± 4.0 35.7 ± 2.3 10.1 ± 1.5 7.9 ± 1.5 

30 14.1 ± 8.5 107.4 ± 9.9 34.3 ± 3.2 11.3 ± 2.7 11.8 ± 4.7 

40 8.7 ± 7.1 93.2 ± 16.3 33.5 ± 6.1 13.6 ± 3.9 19.1 ± 8.7 

50 6.0 ± 4.2 93.2 ± 12.7 32.9 ± 4.1 14.0 ± 3.8 18.9 ± 7.8 
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despite intense and careful management of this population indicates that the main 

causative agent of the high calf mortality rates is likely genetically-based and a by-

product of low genetic variation.  As such, artificial insemination will likely act only to 

increase birth rates, but will not substantially affect the survival of the calves.  Of the 

original genetic diversity, 10% is lost within 28 years, indicating a slower rate of genetic 

deterioration compared with scenarios 1 and 2.  The average age of the population at 50 

years is 8.4 ± 1.5 years, which is significantly lower than that from either of the previous 

scenarios (two-tailed t-test, p < 0.0001). 

To further investigate extinction rates, population size and birth rates were 

compared between scenarios 1, 2, and 3 for 100 simulations each.  Results for these 

simulations are shown in Table 17.  ANOVA indicates that the averages for time to  

extinction, year of last birth, and proportion of years with no births are not uniform 

across the 3 scenarios (p < 0.001).  Tukey’s HSD further reveals that for all three 

measurements, scenarios 1 and 2 were not significantly different (p > 0.01), while  

 
 

TABLE 17 

Extinction data summarizing results of 100 simulations under scenarios 1, 2, and 3 

 Scenario 1 Scenario 2 Scenario 3 
Proportion Extinct Simulationsa 0.99 1.0 0.26 
Time to Extinctionb 47.4 ± 13.3 47.1 ± 13.1 77.2 ± 15.7 
Year of Last Birthc 40.0 ± 15.0 39.0 ± 13.1 91.8 ± 15.7 
Proportion Years with No Birthd 38.3 ± 9.2% 39.6 ± 8.4% 7.5 ± 11.3% 

 
See Table 15 for a description of the various scenarios presented.  a, proportion of simulations  
in which one or both sexes becomes extinct at or before 100 years; b, average time until one  

or both sexes becomes extinct, taken only for those simulations that become extinct at or before  
100 years; c, average taken for all simulations; d, total number of years with no births/total number  

of years with population size > 0 
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scenario 3 was significantly different from either 1 or 2 (p < 0.01).  Using the confidence 

interval for the average time to extinction, there is a 99% chance of extinction given the 

conditions of scenarios 1, 2, and 3 in approximately 50.8, 50.5, and 81.3 years, 

respectively.   

The last 4 scenarios simulated the effects of bison importation into the TSBH 

(Table 15).  The fourth scenario included random mating, large herd natality and 

mortality rates, and 3 migrants in the first year of the simulation.  Scenario 5 was similar 

to the fourth except the migrants were allowed to preferentially mate in the year of 

importation, followed by random mating in all subsequent years.  In the 6th scenario, a 

total of 9 bison were imported into the population at a rate of 3 bison every 5 years with 

preferential mating in the year of importation (random mating all other years) and 

assuming large herd natality and mortality rates.  Finally, the 7th scenario utilized the 

best-case importation scenario of 9 bison total, but assuming fitness would not increase 

to produce natality and mortality rates as those seen in other captive bison populations 

(i.e. large herd demography).  Instead, the average between the small herd and large herd 

natality and mortality rates was used for this scenario (Table 15).  There is a significant 

difference in the total number of alleles and heterozygosity in year 100 between the 4 

scenarios (ANOVA, p < 0.0001).  Tukey’s HSD reveals significant pairwise differences 

between all scenarios in average heterozygosity and all pairs except 6/7 in total number 

of alleles in year 100 (p < 0.01).  Average total number of alleles and heterozygosity in 

year 100 were further compared between scenarios 6 and 7 and found to not be 

significantly different using a two-tailed t-test (p = 0.1147 and 0.2734, respectively).  In 
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scenarios 4, 5, and 6, the average time for the population to reach carrying capacity (n = 

200) is approximately 15 –16 years, while that for scenario 7 is 49 years.  The average 

time to incur a 10% loss of genetic diversity for treatments 4, 5, 6, and 7 is 49, 69, 71, 

and 59 years, respectively, while the average age at 50 years is 9.3, 9.5, 9.5, and 8.2 

years, respectively. 

Table 18 illustrates the proportion of fixed loci out of 51 total present during the 

simulation on average.  Averages are taken only from those simulations with a 

population size n > 0 in a given year.  For scenarios 1 – 3 with no added genetic 

diversity through importation, the proportion of fixed loci starts at almost 10% and 

increases steadily thereafter.  In the last four scenarios, which include bison importation, 

a single locus is fixed in year 0 (by chance, the 3 imported males from group 1 are  

homozygous for the same allele that is fixed in the TSBH population at a single locus).   

As such, the proportion of fixed loci starts at around 2% and either increases at a 

substantially slower rate compared with scenarios not including importation (scenarios 4 

and 5), or actually decreases with the importation of additional groups of males 

(scenarios 6 and 7; Table 18). 

 

Discussion 

Potential causes of biological and genetic observations in the TSBH  

 A minimum effective population size (Ne) of 50 individuals is commonly used as 

a population management goal to minimize inbreeding for short-term population 

survival (Franklin 1980; Soulé 1980).  If all adults from the TSBH are considered (10 
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TABLE 18 

Average proportion fixed loci out of 51 total loci from 20 simulations 

Year Scenario 
1 

Scenario 
2 

Scenario 
3 

Scenario 
4 

Scenario 
5 

Scenario 
6 

Scenario 
7 

0 9.8% 9.8% 9.8% 2.0% 2.0% 2.0% 2.0% 

10 11.2% 12.7% 11.8% 2.1% 2.0% 0.0% 0.0% 

20 15.4% 16.7% 14.3% 2.4% 2.0% 0.0% 0.0% 

30 23.1% 24.8% 16.8% 2.5% 2.1% 0.0% 0.0% 

40 37.5% 40.0% 18.4% 2.7% 2.5% 0.0% 0.0% 

50 37.1% 51.0% 22.1% 3.1% 2.6% 0.0% 0.0% 

100 — — 37.1% 5.1% 3.2% 0.4% 0.6% 
 

See Table 15 for a description of the various scenarios presented.  Averages taken only from those 
simulations with a population size > 0 in a given year. 

 
 
 

males, 15 females), then Ne = 24 (Wright 1931; Caballero 1994).  The Ne formula of 

Lande and Barrowclough (1987) uses Nem and Nef as the number of effective males and 

females (calculated here as 4.0 and 20.1, respectively) based on variance in offspring 

number, which in this case results in an effective population size of 13.3.  This Ne 

estimate is lower than the previous calculation due to polygynous mating in bison, and 

indicates that genetic diversity will be lost at a rate equivalent to an idealized population 

of approximately 13 individuals.  Regardless of how Ne is calculated, the effective 

population size of the TSBH is substantially lower than the recommended minimum of 

50 for avoiding inbreeding depression and ensuring short-term population survival.    

 Genetic drift is expected to decrease genetic diversity at a rate inversely 

proportional to population size (Lacy 1987).  The TSBH calf population for a 4-year 

period has a demonstrated loss of genetic diversity compared to the current adult 
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population as represented by a 7.6% difference in the total number of alleles present.  

This 4-year period represents the approximate generation time in bison, and the rate of 

erosion of genetic diversity is therefore estimated by this statistic.  Clearly, genetic drift 

is currently causing a reduction in genetic diversity, and will continue to do so as long as 

the effective population size remains dangerously small.    

 Closed populations that have survived one or more population bottlenecks, 

especially when followed by consistently small census population sizes, will generally 

display an overall loss of genetic diversity (Nei et al. 1975).  Empirical examples of 

populations with reduced genetic variability following historic bottleneck events include 

the Alpine ibex (Maudet et al. 2002), black-footed ferret (Wisely et al. 2002), cheetah 

(O’Brien et al. 1983), elephant seal (Bonnell and Selander 1974; Hoelzel et al. 1993), 

Florida panther (Roelke et al. 1993), and greater prairie chicken (Bouzat et al. 1998).  

The survival of closed populations, however, is likely affected much less by initial 

population size than by maintenance population size due to the consequences of genetic 

drift in continuously small populations (Nei et al. 1975).  In fact, Senner (1980) reports 

that increasing the initial population size above 5 has little theoretical effect on long-

term population survival, but that small increases in the maintenance population size 

have dramatic effects on the probability of long-term population survival.  These 

theoretical results are congruent with historical data for the TSBH when compared to 

other extant bison herds. 

 Inbreeding increases at a rate inversely proportional to population size, thereby 

resulting in a single common lineage among all individuals of a closed population given 
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ample generations (Senner 1980).  Inbreeding is known to have widespread detrimental 

effects in naturally outbreeding mammalian species.  Examples include low birth weight, 

decreased litter sizes, increased mortality, and increased sterility in Poland China swine 

(McPhee et al. 1931); cryptorchism, high levels of defective sperm, and heart defects in 

the Florida panther (Roelke et al. 1993); low sperm counts and high juvenile mortality 

rates in cheetahs (O’Brien et al. 1985); increased rates of juvenile mortality in several 

ungulate species (Ralls et al. 1979); and vulnerability to infectious diseases in several 

mammalian species (O’Brien and Evermann 1988).  Several demographic features of the 

current TSBH population concur with documented examples of inbreeding depression 

and/or loss of genetic variation through drift, such as low natality rates, probable male 

infertility, and high calf mortality rates, although inbreeding is not indicated through 

HWE testing.  Three of the tested males that exhibited sperm motility and morphology 

abnormalities did not sire any offspring in the 4 year test period, which acts to further 

drive down the effective population size and increase the potential for inbreeding in the 

TSBH.  Drift has likely compounded the issue of reduced fitness through the random 

loss of potentially important alleles and fixation of deleterious mutations (Lande 1994), 

possibly explaining the nearly stagnant growth rate of this population compared with 

other closed bison populations. 

 

Considerations of bison importation into the TSBH 

 There are very few examples of populations that have recovered in census size 

following bottleneck events despite apparent lack of genetic variation (e.g. elephant seal; 
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Bonnell and Selander 1974), and the long-term fitness effects on such populations are 

unknown.  However, the TSBH has not shown any trend towards increased recruitment 

or decreased calf mortality rates in the past 6 years of intense management and care.  

Though it is remotely possible this population might survive the current inbreeding 

depression through purging of deleterious alleles, the end result would almost certainly 

be a further reduction in genetic variation, increasing the probability of catastrophic 

demise by disease or natural disaster (Franklin 1980; Soulé 1980).  Furthermore, the 

TSBH already exhibits low heterozygosity, which has been associated with an increased 

risk of population extinction (Saccheri et al. 1998). 

 Immigration is commonly recommended to alleviate inbreeding depression and 

improve population fitness in small closed populations.  Furthermore, immigration into 

small populations is likely to increase the probability of population persistence, as 

indicated by ecological modeling of African wild dog populations (Vucetich and Creel 

1999).  The number of migrants necessary to counter the effects of drift is commonly 

taken to be one migrant per generation (OMPG) based on theoretical and experimental 

evidence (Spieth 1974; Franklin 1980; Spielman and Frankham 1992).  However, 

OMPG is sufficient only for minimizing loss of polymorphism and heterozygosity 

within subpopulations while allowing for divergence in allele frequencies among 

subpopulations.  OMPG is not sufficient in cases involving small populations, where 

individual viability will likely decrease and deleterious mutations will increase, 

collectively leading to an increased probability of extinction (Couvet 2002).  Mills and 

Allendorf (1996) also argue that OMPG is inadequate and suggest a minimum of 1 and 
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maximum of 10 MPG to prevent erosion of local adaptations and outbreeding depression 

in cases such as those involving inbreeding depression, when Ne is much less than total 

population size, when migrants are likely to be at a disadvantage in terms of survival and 

breeding success, when the receiving population has been isolated for many generations, 

and/or when demographic or environmental variation indicates high danger of extinction 

without aggressive supplementations.  Notably, the TSBH meets each of these criteria.  

The decision to import unrelated bison into the TSBH should not be made hastily 

or carelessly.  Although this population is genetically distinct from other North 

American bison populations (Table 4, 6, 7; Figure 5; Ward 2000), all evidence to date 

including natality and mortality rates and measures of genetic diversity and 

heterozygosity indicates that the TSBH is in a perilous genetic and demographic 

situation that will most likely lead to extinction.  Even Simberloff (1996), while strongly 

warning of the dangers of hybridization between species and subspecies, recognized that 

introductions of new genetic variation into small populations should be considered even 

when the loss of a local gene pool is evident when the risk of population extinction is 

threatening.  That is, if the gene pool would likely be lost without the introduction of 

new genetic variation, the introduction is justified as a last resort.  The potential benefits 

from the addition of bison into the TSBH of increased genetic diversity, reduced levels 

of inbreeding, increased fitness, and increased adaptive response are critical to the long-

term survival of this population (Lewontin and Birch 1966; Soulé 1980). 

Any potential source of bison for importation into the TSBH should be disease-

free, have comparatively high levels of genetic diversity, and should have no history of 



125 

 

hybridization with domestic cattle.  The choice of males from YNP was based not on the 

feasibility of actually obtaining and importing these bison, but rather on meeting the last 

2 of the aforementioned criteria.  It is important to investigate the effects of increased 

genetic diversity as a product of bison importation into the TSBH regardless of the 

actual source.  A direct historic link does exist between the TSBH and YNP, as Charles 

Goodnight donated 3 bison bulls to help establish the YNP population in 1902 (Table 1).  

Although the YNP bison population currently suffers from brucellosis, they are known 

to have high levels of genetic diversity compared with other closed bison populations, 

including the TSBH (Table 4; Wilson and Strobeck 1999; Schnabel et al. 2000).  

Furthermore, the YNP bison population has no history of hybridization with domestic 

cattle, and neither domestic cattle mitochondrial DNA nor nuclear alleles have been 

detected in YNP bison (Chapter III).  The WC bison population also meets the 

aforementioned criteria and is disease-free, providing an additional potential source for 

the TSBH.   

The effects of importing male bison into the TSBH were examined in this study.  

However, it is clear that one or both sexes could actually be used in such a scenario.  

This choice was based on two criteria.  First, males were chosen to minimize dilution of 

the unique bison mitochondrial DNA type found exclusively in the TSBH (Ward et al. 

1999; Ward 2000; population abbreviation JA).  There is currently no evidence that the 

TSBH has a unique Y-chromosome constitution compared with other bison populations, 

as this population shares a common bison allele with all other tested populations at the 

Y-chromosome marker INRA189 (Appendix B).  Second, importing a small number of 
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males is more time- and cost-effective than importing the same number of breeding 

females, since males can make a larger genetic impact on a population in a shorter 

amount of time. 

 

Implications of modeling results 

Without the addition of novel genetic variation into the TSBH, the model reveals 

that the population is likely to become extinct.  The management practice of breeding a 

single male to all females in a given year (scenario 2) compared with random mating 

(scenario 1) has probable genetic consequences of reduced heterozygosity and overall 

diversity, although the probability of population survival is equivalent (Table 17; Figure 

10, 11, 12).  Furthermore, the average proportion of fixed loci is notably higher after 50 

years in scenario 2 versus 1.  Although bison natural mating practices include polygamy 

(Berger and Cunningham 1994), unnatural exacerbation of this mating regime seems 

imprudent given the small size of this population and already low genetic variation.  

Indeed, the least cost- and time-intensive change in the current management strategy that 

will at least slow the degradation of genetic diversity in the TSBH would be to employ a 

more random mating scheme.  However, the extinction rate under either of these 

scenarios is convincingly high enough that neither of these management schemes is 

recommended for the long-term survival of this population. 

The third scenario was designed to simulate the potential effects of artificial 

insemination in the TSBH.  The rate of extinction under this scenario is slower than that 

from scenarios 1 and 2, but the model indicates that if the population does survive under 



127 

 

this scenario, it will remain stagnant in size (Figure 10).  Even if this population were to 

survive the next 100 years through artificial insemination, it would likely have even less 

genetic variation and heterozygosity than observed today (Figure 11, 12).  Furthermore, 

the model predicts the fixation of about 37% of microsatellite (presumably neutral) loci 

in the next 100 years, which will place the population at further risk of catastrophic 

demise due low selective response (Table 18).  The application of artificial insemination 

as a viable management scheme would be prohibitively expensive and time consuming, 

and the model indicates the genetic and demographic benefits are limited. 

 With the addition of unrelated bison into the TSBH and under the assumption of 

increased fitness (scenarios 4 – 7), the model clearly shows increases in population size, 

a slower rate of genetic deterioration, improvements in heterozygosity, and a 

substantially slower rate of  fixation of neutral loci (Figure 10, 11, 12; Table 18).  The 

model indicates that if bison were imported into the TSBH, the best breeding strategy 

would be to allow the imports to make a large contribution to the breeding pool through 

selective breeding of these bison (scenario 5).  If the same bison are imported, but not 

given mating preference (scenario 4), the genetic contribution over time will be less and 

genetic deterioration, therefore, will occur more quickly (after 100 years: 16.7% gain of 

alleles, 9.7% gain of heterozygosity, and 5.1% fixed neutral loci in scenario 4 versus 

24.7%, 17.5%, and 3.2% in scenario 5, respectively).  Even with relatively few bison 

imported into the population, the long-term effects are substantial.  In all of the scenarios 

that include bison importation, the average proportion of fixed loci after 100 years is 
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significantly less (0.4% – 5.1%) than the current proportion (9.8%) found in this 

population (Table 18). 

 The minimum number of bison immigrants necessary to substantially improve 

the probability of population survival is unknown.  To that end, both a single importation 

event of 3 bison (scenarios 4 and 5) and an importation event approximately once per 

generation for the next 3 generations (scenarios 6 and 7) were examined with this model.  

Clearly, the amount of new genetic variation added into the TSBH with 9 total 

immigrants is significantly more than that with only 3, leading to higher levels of genetic 

diversity and heterozygosity over the next 100 years (Figure 11, 12).   

The introduction of new variation into small, closed populations tends to increase 

fitness and adaptive response (Lewontin and Birch 1966; Spielman and Frankham 1992).  

However, the level of improvement in fitness and probability of population persistence is 

difficult to measure and likely different for every species and population.  In this model 

the introduction of new bison in scenarios 4 – 6 was assumed to trigger increased fitness 

such that natality and mortality rates would mimic those observed in larger captive bison 

populations (Table 13, 15; Berger and Cunningham 1994).  Spielman and Frankham 

(1992) reported reproductive fitness increases in isolated, small, inbred Drosophila 

melanogaster populations with OMPG to approximately half that of the original 

populations.  Scenario 7 simulates the effects of importing 9 bison into the TSBH while 

increasing natality and decreasing mortality to halfway between the current TSBH and 

large herd rates (Table 15).  Although the differences in natality and mortality rates 

clearly change the population growth rate (Figure 10), the expected levels of genetic 
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diversity and heterozygosity after 100 years are not statistically different from the same 

treatment using the large herd natality and mortality rates (scenario 6, Figure 11, 12).  

Therefore, even with moderate changes in fitness coupled with immigration of bison into 

the TSBH, the likely fate if this population is substantially improved.    

 

Concluding remarks 

 These experiments have shown that without the introduction of new genetic 

variation, the TSBH will likely continue to suffer both genetically and demographically.  

Furthermore, without intervention this population faces a 99% chance of extinction in 

the next 51 years.  Artificial insemination is not a reasonable management alternative for 

the TSBH due to the necessarily high investment of time and resources, diminishing 

return of low population survivability, and long-term genetic erosion.  Although careful 

consideration should always be given to the potential negative effects of immigration of 

new individuals into closed populations, especially when the source and recipient 

population are known to have different genetic backgrounds, sufficient evidence exists 

concerning the current status and probable fate of the TSBH to justify and necessitate 

such drastic measures.  The likely long-term advantages of importation of new bison into 

this historically valuable resource include increased genetic variation, improved 

population fitness, and a significantly higher probability of population survival. 
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CHAPTER V 

AN INVESTIGATION OF SUBPOPULATION STRUCTURE AND NON-

RANDOM CULLING PRACTICES IN THE YELLOWSTONE NATIONAL 

PARK BISON POPULATION 

 

O, give me a home where the buffalo roam, 
Where the deer and the antelope play, 

Where seldom is heard a discouraging word, 
And the skies are not cloudy all day. 

— Brewster Higley, “Home on the Range” 1873 

 

Introduction 

 As the oldest and largest of the federal bison herds, the YNP bison population 

receives the most national and international public attention and is furthermore valuable 

from a conservation standpoint for several reasons.  First, it is the only Bison bison 

population in the United States descended, in part, from a continuously wild herd.  In 

fact, Canada maintains the only other population in the world which can claim this 

status.  Second, it is one of only a few bison populations in the world considered “free-

ranging.”  In this regard, the YNP population is not maintained by fences, has not 

received supplemental feed since 1967, and is subjected to population size management 

through natural forces such as predation, competition for resources, and natural 

mortality.  Finally, the YNP bison population is a valuable genetic resource.  As 

demonstrated in Chapters II and III, the YNP population represents a large source of 
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unique bison genetic variation apparently unscathed by introgression from domestic 

cattle. 

As discussed in Chapter I, the possibility of transmission of brucellosis to 

livestock on private lands adjacent to YNP has been the focus of the YNP bison 

population management in recent years.  An agreement between the U.S. Department of 

the Interior, National Park Service, USDA Forest Service, and USDA Animal and Plant 

Health Inspection Service was made in 2000 concerning the management of YNP bison 

as they exit park boundaries (Bison Management Plan for the State of Montana and 

Yellowstone National Park 2000, Final Environmental Impact Statement available at 

http://www.nps.gov/yell/technical/planning; hereafter IBMP-2000).  In general, the 

necessary spatial separation between YNP bison and livestock on adjacent private lands 

has and will be attempted through hazing of bison back onto park property followed by, 

when necessary, the capture, brucellosis testing, and slaughter or release of the captured 

bison depending on test results.  This plan does not aim to eradicate brucellosis in YNP 

bison, but only to control the spread of the disease to private livestock.  The IBMP-2000 

generally assumes that any culling as a result of this plan will be genetically random and 

therefore have no real impact on the genetic constitution of the YNP bison population.  

These assumptions, however, are largely untested.  As acknowledged in the IBMP-2000, 

further research into the genetic implications of the current plan are necessary to 

understand fully both the current genetic constitution and potential impacts of the current 

management plan on the future of the YNP bison population from a genetic perspective. 
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For some time, park biologists have documented geographically distinct bison 

herds within YNP.  Meagher (1973) recognized 3 herds based on winter distribution, 

noting that none of the herds were isolated geographically year-round: Mary Mountain 

(Firehole and Hayden Valley), Pelican Valley, and Lamar.  The known contemporary 

winter movements of these 3 herds are given in IBMP-2000.  In the range of the YNP 

bison population, the Mary Mountain herd is located to the southwest, the Pelican Valley 

herd to the southeast, and the Lamar herd to the north.  The Mary Mountain herd is 

known to migrate in the winter primarily in a westward direction towards West 

Yellowstone, although recent northward movements have been noted (towards 

Gardiner).  The Pelican Valley herd moves eastward and westward during the winter, 

although these migrations are not far enough from the summer range to reach park 

boundaries.  The Lamar herd moves north and northwest during the winter towards 

Gardiner.  The IBMP-2000 emphasizes the potential impact of bison winter movements 

into the West Yellowstone and Gardiner areas on the transmission of brucellosis to 

livestock on adjacent private lands, focusing on overall YNP bison census population 

size and predicted population growth rates to determine the impact of current 

management strategies.  

Recent radiotelemetry data have indicated little interchange of bison between the 

“northern” (Lamar) and “central” (Mary Mountain and Pelican) herds (Edward Olexa, 

USGS unpublished data).  Further, analyses of both tooth wear (David Christianson, 

Montana State University unpublished data) and parturition timing and synchrony (Peter 

Gogan, USGS unpublished data) have demonstrated differences between these two 
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herds.  The current practice of culling bison without regard to possible subpopulation 

structure has potentially negative consequences of reduced genetic diversity and 

alteration of current genetic constitution both within individual subpopulations and the 

overall YNP bison population. 

Unlike the management plan for the YNP bison population, most other federal 

bison management plans include culling that is purposely randomized with respect to 

age and/or sex structure to some extent.  The details of each plan vary from yearly 

culling of 1 year-olds at WC to proportionate culling across age classes at TR every 3 

years (Chapter I).  In contrast, YNP bison are culled based on their misfortunate location 

at the park boundaries and, when possible, on their brucellosis status.  Since bison are 

known to naturally assemble in matriarchal groups including several generations of 

related females and the most recent calf crop (Seton 1937; Haines 1995), it is possible 

that the culling of bison at the YNP boundaries is non-random with respect to family 

groups, a practice that over sufficient time may lead to systematic loss of genetic 

variation. 

In this study, preliminary genetic analyses were conducted to investigate 

potential population substructure and non-random culling in YNP bison.  Various 

analyses of population differentiation, including modeling of population substructure, 

were used to examine the likelihood of at least 2 genetically distinct bison 

subpopulations within YNP.  Parentage analysis was performed to detect parent-

offspring relationships and family groups within bison migrating out of the YNP 

boundaries. 



134 

 

  Materials and methods 

Sample collection, DNA extraction, and microsatellite analyses were performed 

as described in Chapter II.  All samples used in this study were procured from those 

bison exiting the YNP boundaries at West Yellowstone or Gardiner in the winters of 

1996 – 97, 1998 – 99, and 2001 – 02 (Table 19).  Not all bison handled by park 

personnel were sampled, not all sampled bison were tested in this study due to budget 

and time restrictions, and the samples included here are a mix of both slaughtered and 

tested/released bison.  Cementum-annuli methods were used to age individual bison.  

Samples and accompanying field data were kindly provided by Peter Gogan (USGS, 

Montana State University).  All samples were genotyped to 90% completion as 

described in Chapter II.  BMS601 and INRA133 were excluded from all analyses based 

on their propensity for null alleles such that 49 of the 51 autosomal loci previously 

described were utilized in this study (Table 2). 

 Per locus genotypic differentiation was calculated using the exact G-test of 

Goudet et al. (1996) in GENEPOP 3.1d (Raymond and Rousset 1995) with the following 

Markov chain parameters: 10,000 step dememorization, 150 batches, and 50,000 

iterations per batch.  Differentiation between groups was considered significant when p 

< 0.05.  The effective number of migrants (Nm) between subpopulations was calculated 

using the private alleles method of Slatkin (1985) and the correction for sample size of 

Barton and Slaktin (1986) in GENEPOP.   

The STRUCTURE program was utilized to test the probability of subpopulation 

structure through a clustering method for multilocus genotype data (Pritchard et al. 
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2000).  The model underlying the program assumes K subpopulations and uses allele 

frequencies to assign samples to subpopulations in a probabilistic manner.  In this study, 

K was tested for 1 – 5 subpopulations using a burnin period of 20,000 replicates, 

500,000 Markov Chain Monte Carlo replicates, and a new random seed for each run.  

Appropriate burnin and replications for this dataset were determined as described by 

Pritchard et al. (2000).  The assignments of individual bison to various subpopulations 

were compared a posteriori to actual collection sites. 

Likelihood-based parentage testing was performed using CERVUS 2.0 (Marshall et al. 

1998) with the following analysis parameters: 50,000 cycles, 1% genotyping error rate, 

80% relaxed confidence, and 95% strict confidence assuming that only 10% of the 

candidate parents were sampled in each case.  Parentage analysis was performed in a 

stepwise fashion for individual years and locations (4 groups total, see Table 19).  First, 

0 – 1 year-olds were treated as offspring with all bison 2+ years of age treated as 

candidate parents.  Next, each age class from 2 – 6 years was treated individually as 

offspring with all bison in any older age classes treated as candidate parents (for the 2 

year-old offspring, all bison 3+ years old were potential parents, etc).  Two samples from 

the 2001 – 02 West Yellowstone group were of unknown age and were therefore treated 

first as calves with the 0 – 1 age group and then used as potential parents during each 

remaining analysis.  Seven samples from this same group had field classifications as 

“adults” and were included with the 3 year-old group as offspring and all other analyses 

as potential parents. 
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TABLE 19 

Sex and age distribution of YNP bison sampled 

  Age Sex  
Location Year Fetal 0 1 2 3 4 5 6 7 8 9 10+ Males Females Total 
Gardiner 1996 - 97  46 27 29 12 7 11 7 9 6 4 8 63 103 166 

West Yellowstone 1996 - 97  6 3 5 23 3 8 4 2 1 2 6 32 31 63 
West Yellowstone 1998 - 99 29    4 18 17 9 10 4 2 3 48 48 96 
West Yellowstone 2001 - 02  18 6 7 29 6 10 1 2 4 2 9 42 61 103a 

 
All bison samples were collected in the winter as indicated in the area surrounding Gardiner or West Yellowstone.  Ages are approximate and 

determined by cementum aging techniques.  a, 9 samples not recorded in age categories are from 2 age unknown bison and 7 with age classification of 
“adult,” assumed to be at least 3 years old for the purposes of this analysis 
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The 29 fetal samples from the West Yellowstone 1998 – 99 collection included 

12 females and 17 males.  In all 29 cases, both the cow and fetus were sampled and the 

true cow matching each fetus is known from the field data.  As such, these 29 samples 

were used as a control group to test the efficacy of the parentage analysis to match 

offspring with parents, with all 67 remaining samples from this group considered 

candidate parents. 

Preliminary analyses failed to find any parent-offspring matches across location-

year groups.  Although there is a remote possibility that an offspring and parent were 

sampled in different locations and/or different years, the probability was considered low 

enough that these analyses were not exhausted and are not presented here.  Therefore, 

the results presented below are only from parentage analysis within the same location-

year group.   

 

Results 

Subpopulation structure testing 

Genotypic differentiation results are summarized in Table 20, with the number of loci 

with significant differentiation between sample groups indicated as a percentage of the 

total number of tested loci.  The data were divided and tested in 5 groups, with number 

of sampled individuals in each group found in Table 19.  First, the Gardiner and West 

Yellowstone samples for 1996 – 97 were compared, with 65.3% of the loci between the 

two groups significantly different in genotypic distribution.  Next, all Gardiner samples 

were compared with all West Yellowstone samples (77.6% loci significantly  
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TABLE 20 

Summary results for genotypic differentiation among YNP bison groups 

Comparison Loci tested % Genotypic 
differentiation 

Gardiner 97 vs. WYell 97 49 65.3 
Gardiner 97 vs. WYell all 49 77.6 
WYell 97 vs. WYell 99 49 8.2 
WYell 97 vs. WYell 02 49 8.2 
WYell 99 vs. WYell 02 49 12.2 

 
Location-year groups and number of sampled bison are found in Table 19.  Indicated years correspond to 

the late winter (e.g. 97 = winter 1996 – 97).  WYell, West Yellowstone; % Genotypic differentiation, 
frequency of loci that showed significant genotypic differentiation (p < 0.05). 

 
 
 

differentiated).  Pairwise comparisons from West Yellowstone samples were further 

performed with 8.2%, 8.2%, and 12.2% of the loci differentiated in the 1996 – 97 vs. 

1998 – 99, 1996 – 97 vs. 2001 – 02, and 1998 – 99 vs. 2001 – 02 comparisons. 

The number of effective migrants between the North (Gardiner) and Central 

(West Yellowstone) bison subpopulations was estimated at 2.4 for the 1996-97 data and 

6.4 for the combined data from all years.  For comparison, the same approach was used 

to estimate the number of effective migrants between the two TR populations (Nm = 0.3) 

and between FN and NS (Nm = 1.4) as described in Chapter II.   

 Posterior probabilities of the K = 1, 2, 3, 4, or 5 tested number of subpopulations 

within the YNP data set including all Gardiner and West Yellowstone samples for     

1996 – 97 are shown in Table 21.  The probability of 1, 2, or 5 subpopulations within 

this data set is approximately 0.  The most likely number of subpopulations is 3, with an 

associated 81.7% probability.  There is also an approximately 18.2% probability 

associated with the division of these samples into 4 subpopulations.  As discussed in  
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TABLE 21 

Probabilities of various numbers of subpopulations in the 1996-97 YNP bison data 

K ln [Pr(X|K)] Pr(K|X) 
1 -27181.1 0.000000 
2 -26697.0 0.000000 
3 -26684.0 0.817574 
4 -26695.6 0.182426 
5 -26705.2 0.000000 

 
A uniform prior on K = 1 - 5 is assumed to calculate Pr(K|X) from ln Pr(X|K), as described in Pritchard et 
al. (2000).  K, predefined number of subpopulations; ln Pr(X|K), estimated natural log of the probability of 

the data given K subpopulations; Pr(K|X), posterior probability of K subpopulations. 
 
 
 

Pritchard et al. (2000), in cases where two modes are found the results should be used 

for that mode with the highest associated probability.  In this case, the associated 

probability of 3 subpopulations is much higher than that for 4 subpopulations and is 

therefore the most parsimonious solution given these results.  The bimodal results found 

here may be the result of the sampling of family groups, which would cause a 

nonrandom distribution of alleles within true subpopulations and lead to an overestimate 

of K in some instances.  That is, in some cases, the “true” 3 subpopulations would be 

further divided into 4 subpopulations simply based on the nonrandomness of the data 

due to family groups.  Similar calculations were made for the entire data set of Gardiner 

and West Yellowstone shown in Table 19, with the probability of 1 or 2 subpopulations 

within the data set also being approximately 0.  In this analysis, the posterior probability 

of 4 subpopulations within the dataset was 99.99%, while that for 3 subpopulations was 

approximately 0. 
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TABLE 22 

Number of YNP 1996-97 samples assigned to various subpopulations  

  Number assigned to population: 
K Location 1 2 3 4 
2 Gardiner 116 50 - - 
 West Yellowstone 3 60 - - 

3 Gardiner 85 36 45 - 
 West Yellowstone 2 6 55 - 

4 Gardiner 31 27 69 39 
 West Yellowstone 6 3 1 53 

 
Assignments were made a priori without collection location information.  The most likely number of 

subpopulations based on STRUCTURE analysis is 3, as shown in Table 21. 
 
 
 

The assignment of individuals to K subpopulations was compared for K = 2, 3, 

and 4 based on both observational and computational probabilities of the existence of 2 – 

4 subpopulations, as summarized in Table 22.  When K = 2, 69.9% of the Gardiner 

samples are assigned to one population along with 4.8% of the West Yellowstone 

samples, while 30.1% Gardiner and 95.2% West Yellowstone samples are assigned to 

the other population.  When K = 3, two subpopulations are composed mostly of Gardiner 

samples, while the other subpopulation is again an admixture of Gardiner and West 

Yellowstone samples.  The subpopulation assignments are not robust: when K = 2, only 

39.8% Gardiner and 49.2% West Yellowstone assignments are based on probabilities of 

> 80%. 

 

Parentage testing 

The total power of exclusion for identifying one unknown parent, without 

knowledge of the other parent, was 99.99% within each of the 4 groups tested (Table 
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19).  Attempts were not made to find genotyping errors to correct parentage assignments 

when more than 2 loci were mismatched, even when the assignment carried a high 

confidence value.  As previously discussed, various factors in the sampling of these 

bison precluded a complete data set of all bison at a particular location on a particular 

date.  As such, the total parent-offspring matches made in each group are considered 

underestimates of the true number of parent-offspring pairs that likely existed in each 

location-year group.  Attempts were made to detect “cohorts,” in this case referring to 

any related group, and are reported below with maximum inclusion such that the same 

individual is not represented in more than one group.  A summary of the number of 

parent-offspring matches and cohorts detected in each group is shown in Table 23. 

From the 166 bison sampled from Gardiner in the 1996 – 97 winter, 29 total parent-

offspring matches were confirmed.  Of these, 17 involved calves and 12 involved 

offspring > 1 year old.  Of the 12 parent-noncalf matches, 4 included male offspring 

(three 1 year-olds and one 2 year-old).  Within the matches, 7 cohorts were detected.  

One female 9 year-old was killed on 02/11 along with her 3 year-old female offspring, 

while her 2 year-old male offspring was killed on 01/16.  A female calf killed 01/21 and 

1 year-old male killed 01/20 were both offspring of a 5 year-old female killed 01/15.  An 

8 year-old female killed 01/15 was the dam of a female calf killed 01/20 and a male 

yearling killed 01/16.  A 2 year-old female killed 01/07 and a male calf killed 01/20 

were both offspring of a 6 year-old female killed 01/16.  One male and one female calf 

were both determined to be the offspring of an 8 year-old female, all of which were 

killed on 01/08.  The genotypes of the calves do not indicate duplicate sampling, 
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suggesting either an unlikely error in aging the calves or non-identical twins (precluding 

clerical error).  Bison twins have been noted on rare occasion.  Meagher (1973) reported 

only one known case of twins in YNP through 1966.  Another surprising cohort from the 

1996 – 97 Gardiner group was a 12 year-old male killed 03/06 who sired 2 minimally 

half-sib females, ages 2 and 5, killed within two days of each other (01/17 and 01/15).  

The only multi-generational female cohort detected in this study was led by a 7 year-old 

female killed 01/24, who was the dam of a 4 year-old female killed 01/16, who was the 

dam of a 3 year-old female killed 01/17, who was the dam of a male calf killed 01/22. 

Three parent-offspring matches were made within the West Yellowstone 1996 – 

97 group.  The 2 involving calves matched an 11 year-old dam and a 4 year-old dam.  

The other match was a 15 year-old male with his 6 year-old female offspring killed one 

month apart (01/27 and 02/27). 

All 29 fetal samples from the West Yellowstone 1998 – 99 group matched with 

confidence to the respective known dams and without conflicting candidate parents (i.e. 

more than one female with a high probability of parentage).  Several other parentage 

matches were made from this group.  In two cases, matches were also made to the sires 

of the fetuses: one 10 year-old sire was killed 04/01 while the 7 year-old dam and fetus 

were killed 04/15; one 8 year-old sire was killed 01/08 while the dam and fetus were 

killed 04/15.  In another case, a 5- and 4- year old dam-female offspring pair were killed 

on the same day and both were pregnant (04/15).  Lastly, a 6 year-old pregnant dam was 

killed on 04/15 at Horse Butte and her 4 year-old male offspring was killed 01/08 at 

Duck Creek (both locations are in the West Yellowstone area).  This last case is the only 
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TABLE 23 

Summary of parentage results by location-year groups 

 
Herd size estimated for Northern herd for Gardiner samples and for Central herd for West Yellowstone (WYell) samples in the year of collection.  Dam- 

and sire-calf pairs include parentage matches with < 1 year-olds.  Dam- and sire-noncalf pairs include parentage matches with > 1 year-olds.  Cohorts 
detected include any groups that were detected through parentage analysis, such as dam and multiple offspring of different ages.  Individual cohorts are 

discussed in the text. a, from fetal samples; b, including 2 sire-dam-fetus matches 
 

Location Year Herd 
size 

Total 
tested 

Dam-calf 
pairs 

Dam-noncalf 
pairs 

Sire-calf 
pairs 

Sire-noncalf 
pairs 

Total parent-
offspring pairs 

Cohorts 
detected 

Gardiner 1996 - 97 865 166 17 10 0 2 29 7 
WYell 1996 - 97 2571 63 2 0 0 1 3 0 
WYell 1998 - 99 1846 96 29a 2 2a 0 33 4b 
WYell 2001 - 02 2420 103 8 4 0 0 12 1 
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one in which the offspring-parent pairs were not sampled from the exact same location 

within the West Yellowstone area. 

From the West Yellowstone 2001 – 02 group, 12 parent-offspring pairs were 

matched.  Of these, 8 were calf-dam pairs.  One cohort was detected, involving a 5 year-

old dam killed 04/25 and 2 of her offspring: a male calf killed 04/25 and a 4 year-old 

female killed 04/10. 

Excluding the 31 total matches made to the 1998 – 99 West Yellowstone fetuses, 

a total of 46 parent-offspring matches were made.  Approximately 35% of these matches 

were sampled on the same day, while 50% were sampled within 1 day and 

approximately 83% within one week of each other.  The field dates available for these 

samples correspond to the test date and not necessarily to the capture date, which are 

generally separated by a maximum of one week (Peter Gogan pers. comm.).  It is 

therefore possible, but not verifiable, that more of the cohorts described above actually 

exited park boundaries at the same time than are indicated. 

 Female bison generally reach sexual maturity as 2 year-olds, capable of 

producing their first calf at 3 years of age (Berger and Cunningham 1994).  Although 1 

year-old females have been known to breed and produce calves as 2 year-olds, the 

occurrence is quite rare.  Meagher (1973) reported an “occasional” yearling female 

breeding in the YNP population, while Berger and Cunningham (1994) estimated a 4.1% 

calving rate for 2 year-olds in the BNP population.  Three mother-daughter pairs 

identified in this study were only 1 year apart (one 4- and 3-year old pair and two 5- and 

4-year old pairs).  As the production of a calf by a yearling female is biologically not 
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possible in bison, and the results reported here are quite robust based on the number of 

polymorphic markers utilized and the high level of statistical confidence required to 

accept a parent-offspring match, the most likely cause of these 3 discrepancies is in the 

assignment of ages.  Cementum-annuli aging methods in bison have an overall accuracy 

of only 49%, with a 68% probability of age assignment to within ± 1.06 years of the 

actual age (Moffitt 1998).    

 

Discussion 

After the 1967 adoption of the YNP natural-regulation policy followed by a 

natural increase in bison numbers, bison began to be killed by non-natural means 

exclusively when moving beyond YNP boundaries.  Until the 1980s, it was necessary to 

remove relatively few bison by these methods.  The combination of several severe 

winters, competition for winter resources with other grazers, and large census bison 

population sizes have led to more YNP bison movements to peripheral locations, and 

across YNP boundaries, in the past 20 years.  The current management plan takes into 

consideration the census size of the bison population and expected population growth 

rates without regard for possible population substructure.  The 1,700 bison minimum, 

near which point lethal alternatives in the plan are to be minimized in favor of alternative 

management techniques, is set forth by the IBMP-2000 based on population modeling of 

the carrying capacity of the Yellowstone ecosystem estimated at 1,700 – 3,500 bison 

depending on forage availability and weather factors. 
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Evidence and possible effects of subpopulation structure 

The results of this study sufficiently indicate some level of population 

subdivision with the YNP bison population.  The modeling results presented here 

indicate the Gardiner and West Yellowstone groups may not be true subpopulations 

given that the Gardiner group appears in part to contain bison with similar genetic 

background to the West Yellowstone samples (Table 22).  That is, the extrinsic grouping 

of bison by collection location, at least within the 1996 – 97 dataset, is not entirely 

reflective of underlying genetic structure.  There are at least 3 explanations for this 

observation.  First, it is possible that a relatively large number samples from the Central 

herd (i.e. those that would otherwise have been found at West Yellowstone) migrated 

north to Gardiner in the winter of 1996 – 97.  Although small numbers of bison have 

been known to migrate from the Central herd in this fashion (IBMP-2000), 45 – 50 bison 

representing 27 – 30 % of the Gardiner samples would have had to migrate in this 

fashion to explain these data (assuming K = 2 or 3; Table 22).  Second, large amounts of 

gene flow from the Central herd to the Northern herd, but not reciprocally, may have 

occurred at some point in the past.  Third, there may actually be 3 bison subpopulations 

within this dataset, as indicated by the model used here (Table 21).  Meagher (1973) 

described extensive intermingling of bison from the Pelican Valley and Lamar herds 

during pre-1970 breeding seasons, and noted the least amount of intermingling between 

the Mary Mountain herd and the combined Pelican-Lamar herd.  The Pelican Valley 

herd is currently considered part of the Central herd, but is probably not represented in 

the West Yellowstone samples from 1996 – 97 based on known contemporary winter 
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movements (IBMP-2000).  As such, the current Northern herd may partially consist of 

germplasm from the Pelican Valley herd due to historic genetic mixing. 

The possibility of 4 separate subpopulations within the overall YNP bison 

population cannot be excluded, but is considered unlikely based on the possible 

nonrandomness of the dataset due to family groups leading to overestimation of K, bias 

of the data from unpaired collections in various years for the West Yellowstone and 

Gardiner sites, observational data of only 2 (Central and Northern) or at most 3 (Mary 

Mountain, Pelican Valley, and Lamar) subpopulations/herds within the overall YNP 

bison populations, and the tendency of the STRUCTURE program to overestimate K 

(Pritchard et al. 2000).  However, these analyses do provide sufficient evidence to 

exclude the possibility of a single, admixed bison population at YNP (Table 21) and are 

supported by significant genotypic differentiation between the samples collected from 

Gardiner and West Yellowstone (Table 20). 

Estimates of the number of effective migrants between the Gardiner and West 

Yellowstone “groups” indicate limited gene flow, but at a level sufficient to satisfy the 

“one migrant per generation” rule to maintain genetic panmixia (Lande and 

Barrowclough 1987).  As expected, the Nm estimates between the YNP groups are 

higher than the estimates between the two TR populations and the FN and NS 

populations.  The two TR populations were founded from the same stock within years of 

each other but have been managed in isolation for around 40 years (Table 1).  Although 

the populations have a common ancestry, they have notable genetic differences (Table 4, 

6, 7), which are reflected in the low estimated Nm.  Alternatively, the FN-NS comparison 
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was chosen based on the genetic similarity of these populations (Table 6, 7) and recent 

shared ancestry (although NBR and WM also contributed founders to NS; Table 1).  

Slatkin’s (1985) Nm estimate is based on discrete generations and assuming an equal 

immigration rate between demes and so should not be considered highly reliable, 

especially given the results of STRUCTURE modeling and difficulties surrounding non-

random sampling of these data. 

Although the maintenance of population subdivision theoretically leads to 

decreased genetic variation within individual subpopulations due to drift, overall 

population genetic variation is expected to increase due to differential drift of alleles and 

the establishment of new mutations within subpopulations (Lande and Barrowclough 

1987).  As such, the maintenance of subpopulations within the YNP bison population 

may contribute to the relatively high levels of overall genetic variation observed in this 

population (Table 4; Figure 3, 4).  The caveat, however, is that caution must be practiced 

in the management of populations with substructure to ensure the maintenance of both 

subpopulation and total population variation.  The YNP bison population has not 

previously been managed with this consideration in mind.  For example, 1,084 bison 

were removed from YNP in the winter of 1996 – 97, representing a 31.5% decrease in 

total population size.  Even more troubling, however, is the inequality in the reductions 

across the Northern and Central herds.  While the Northern herd suffered a loss of 

approximately 83.9% (726/825), the Central herd was reduced by only around 13.9% 

(358/2,571; Peter Gogan pers. comm.).  If in fact the Yellowstone bison population is 
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represented by 2 or 3 different subpopulations, disproportionate removals of bison from 

various subpopulations might have detrimental long-term genetic consequences. 

 

Indications of nonrandom culling 

The uncontested matches of 29 fetal samples to their respective dams without a 

priori information provides support for the parentage testing performed here, even when 

the proportion of sampled parents is assumed to be only 10%.  The bison parentage 

microsatellite panel described by Schnabel et al. (2000) consists of 15 total loci, 12 of 

which are sufficient for most cases when neither parent is known, and all of which were 

included in this survey (see Chapter II).  The current microsatellite panel for domestic 

cattle recommended by the International Society of Animal Genetics includes 11 loci 

(Applied Biosystems, Foster City, California).  In other species, parentage analysis has 

been performed with similar numbers of loci, with the number necessary to establish 

parentage based on number of alleles per locus, heterozygosity within a population or 

species, and level of resolution sought.  For example, while only 7 microsatellite loci 

were sufficient to establish parentage in armadillos (Prodöhl et al. 1998) and cowbirds 

(Alderson et al. 1999), a panel of 21 loci has been established (Anderson et al. 2002) and 

utilized (DeYoung et al. 2002) for parentage analysis in deer.  In cases where a small 

proportion of candidate parents are sampled and neither parent is known, higher numbers 

of microsatellite loci are necessary to provide statistical confidence in parent-offspring 

matches.  In this case, even with a 90% chance of not sampling the true parent of a given 
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offspring, a complete match at 49 loci gives a 99% exclusionary power, thereby 

providing confidence in these results. 

 Bison calves generally remain with their mothers throughout the first year of life 

(Berger and Cunningham 1994), so it is not very surprising to find cow-calf pairs within 

the sampled groups.  The long-term genetic and ecological effects of killing off cow-calf 

pairs in this manner are unknown.  Within a particular year or group of years, the short-

term genetic effects are probably minimal.  The population, however, is basically set 

back one year when a sufficient number of cow-calf pairs are killed through wasted 

reproductive effort, loss of genetic potential, and use of resources without beneficial gain 

to the population.  In a relatively large population, however, these burdens may be 

overcome by sheer population size without serious genetic effects.  

 The parent-offspring matches were not limited to calf-cow pairs.  Both male and 

female 1, 2, and 3 year-old offspring were matched to dams.  Several cases of dams with 

multiple offspring of different ages were found, indicating the presence of family units 

within the groups analyzed.  In one case, a multigenerational matriarchal group was 

found which spanned 4 generations ranging from a 7 year-old female to a male calf.  All 

of the animals from this group were killed within 8 days of each other from the same 

location.  These analyses indicate is much more likely for sisters or mother-daughter 

pairs to be sampled from the same location within days of each other, providing 

evidence of matriarchal groups and corroborating observational data (Seton 1937; 

Haines 1995).  McHugh (1972) wrote off such observational reports of matriarchal 

groups as “largely guesswork,” the idea of which he believed was “introduced on 
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circumstantial evidence and promulgated by plains visitors who took a fancy to it.”  

Whatever the case in historical bison populations, the results presented here indicate 

some level of grouping based on relatedness within the YNP bison population.  

Although the majority of noncalf parent-offspring matches involved dams, 3 sire-

offspring matches were found (Table 23).  The matches involved only 2 bulls, one each 

from Gardiner and West Yellowstone in 1996 – 97, which were each killed one month or 

more apart from their respective offspring.    

 

Concluding remarks 

Although subpopulation structure and nonrandom culling with the YNP bison 

population have been suggested by this study, further investigation is necessary to 

properly examine each issue.  The method of sampling from peripheral locations 

involved in this study may have precluded the detection of well-defined subpopulations.  

It is at this point unknown whether 2 or 3 genetic subpopulations exist within the YNP 

bison population, how these subpopulations are related to each other, and how much 

interchange occurs between them.  A random sampling of bison from various locations 

within YNP will be necessary to resolve these issues.  Furthermore, in the long-term it 

may be useful to sample bison from several consecutive years in this manner to establish 

trends in the relationships of subpopulations, such as whether any of the subpopulations 

are naturally converging or are remaining separate and becoming more divergent.   

Although a disconcerting number of parent-offspring pairs and family groups 

were found in this study, providing evidence of nonrandom culling within the YNP 



152 

 

bison population, the magnitude and long-term genetic and demographic effects of this 

type of nonrandom culling are unknown.  For instance, inadequate sampling and 

difficulties in establishing groups based on capture dates prohibited testing of average 

relatedness within cohorts from a single location on a single date against a random 

sample of bison from the associated subpopulation.  The resolution of these issues, 

including potential long-term genetic impact, will require a complete sampling of bison 

as they migrate off park boundaries regardless of their eventual status.  In this manner, 

cohorts can be fully investigated, levels of relatedness established, and culled versus 

non-culled groups compared.  The potential impact of these issues on the long-term 

preservation of YNP bison warrants consideration in the future management of this 

historically and genetically important bison resource. 
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CHAPTER VI 

CONCLUSION 

 

 “It now appears that the conditions of maintenance are so well established that so long 
as the Government prevails, the American bison will continue to endure.” 

— Martin S. Garretson, Secretary of the American Bison Society 1938 
 

 

In the conservation biology field, much energy has been spent recently on 

understanding the impacts of human influence on wildlife species.  In particular, the 

effects of maintaining protected, isolated animal populations on reserves and in parks 

have been the subject of much discussion.  In general, population isolation will lead to 

decreased genetic variation within populations and increased genetic differentiation 

between populations.  The theoretical solution to this situation is the artificial movement 

of a few individuals among populations each generation, thereby creating a panmictic 

superpopulation.  However, other issues such as disease, the adaptation of populations to 

local environments, and genetic introgression from related species must also be 

considered in the management of isolated populations.   

 It is clear that not all bison populations were created equal, and that not all are 

managed uniformly.  Census population sizes, population structure, levels of genetic 

variation, and the incidence of domestic cattle introgression must all be considered in the 

management of bison populations.  In some cases, such as the Texas State Bison Herd, 

the probability of population extinction is high enough to warrant the introduction of 

bison from an unrelated population.  In other cases, the movement of bison between 



154 

 

populations is both unwarranted and unwise.  With the possible exception of the TRN 

population, all of the federal bison populations considered here appear to have adequate 

levels of genetic variation and heterozygosity and high population growth rates, such 

that no urgency should be placed on mixing bison from different populations. 

This study has revealed low levels of domestic cattle introgression in a large 

number of populations, raising some serious management issues.  Obviously, those 

populations with no detectable domestic cattle introgression should be maintained in 

isolation.  Since both the YNP and WC populations contain high levels of genetic 

variation and no evidence of domestic cattle introgression, consideration should be given 

to starting satellite herds using stock from these populations.  The establishment of such 

satellite herds from WC would be considerably easier than from YNP simply due to the 

brucellosis-free status of the current WC population.  The maintenance of satellite herds 

in this manner will help ensure the future preservation of pure bison germplasm.   

The necessary future management of those populations identified as containing 

domestic cattle introgression is less clear and much more controversial.  Possibilities 

range from population elimination to no management change.  The best strategy 

probably lies somewhere between the two extremes.  Most of these populations probably 

contain unique bison germplasm and many are valuable from a historical perspective.  

The “hybrid reduction” method described in Chapter III, whereby detectable hybrids at 

loci identified in this study are eliminated, is one possible solution.  This method would 

effectively reduce the level of detectable hybrids in these populations, but would not 

create “pure” bison populations.  Although additional genetic markers might help this 
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situation somewhat by identifying other genomic regions with domestic cattle 

introgression in these populations, it is virtually impossible to recreate “pure” bison 

populations given the amount of time that has passed since the initial introduction of 

domestic cattle chromosomal regions into these populations.  There may be one 

exception to this rule, however.  A population was formed from NBR bison in Alaska in 

1928, as discussed in Chapter I.  If the introduction of the observed nuclear domestic 

cattle introgression into the NBR bison population was post-1928, it may be possible to 

reconstitute, in part, the original NBR bison population.  Sampling of bison from the 

Delta Junction Herd in Alaska in a manner similar to that performed here might quickly 

determine if this type of “reconstitution” is possible.   

Although attempts were made to sample every U.S. federal bison population, no 

samples were obtained from the Sully’s Hill National Game Preserve.  While this 

population is small, it has a unique historical lineage and has remained a closed 

population since its foundation (Chapter I).  Future investigation is warranted in this 

case, since it is possible that this small population contains previously unidentified pure 

bison germplasm.  This study was not exhaustive of publicly-maintained sources of pure 

bison germplasm.  Six state (U.S.) bison populations were sampled by Ward (2000), and 

all had evidence of domestic cattle introgression.  All other known state herds are 

derived from the federal herds considered here or the state herds examined by Ward 

(2000).  However, Ward (2000) did not find evidence of domestic cattle introgression in 

the few bison tested from Canadian federal populations.  Whether or not some of these 

populations consist of a unique bison subspecies, a genetic survey such as that 
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undertaken here is needed to determine the genetic constitution of these populations in 

relationship to the U.S. federal populations and to seek out other bison populations free 

of domestic cattle introgression.  

 As with any investigation of this magnitude, a seemingly endless number of new 

questions have arisen as a result of these analyses, ranging in scope from population-

specific to quite general.  Still, one noteworthy question stands out among the rest: is the 

Bison bison species a conservation success story?  An answer of “no” might be 

supported by the facts that bison are found only in fragmented populations maintained 

through human influence, that many of the federally protected populations contain 

remnants of domestic cattle introgression, and that disease and potentially damaging 

culling practices are prevalent in one of the few populations with high levels of genetic 

variation and no evidence of domestic cattle introgression (YNP).  However, the 

alternative answer is substantiated by two facts.  First, there is no doubt that without the 

intervention of a few concerned citizens and the Canadian and U.S. governments in the 

late 1800s, bison would have suffered the same fate as the passenger pigeon (the single 

most prevalent bird in North America in the early 1800s, extinct by 1914).  Second, the 

continued involvement of both governments in understanding the current genetic 

structure and long-term effects of management decisions on federally-maintained bison 

populations will help ensure the long-term survival of this iconic species, continuing 

their success story.  Bison have made a remarkable recovery from near-extinction in 

both sheer numbers and relative genetic constitution.  The fate of the species, however, 

still lies in the hands of concerned citizens and the Canadian and U.S. governments. 



157 

 

LITERATURE CITED 

 

Abernethy, K., 1994  The establishment of a hybrid zone between red and sika deer 
(genus Cervus). Mol. Ecol. 3: 551-562. 
  
Anderson, J. D., R. L. Honeycutt, R. A. Gonzales, K. L. Gee, L. C. Skow, et al., 2002  
Development of microsatellite DNA markers for the automated genetic characterization 
of white-tailed deer populations. J. Wildlife Manage. 66: 67-74. 
   
Arnold, M. L., 1992  Natural hybridization as an evolutionary process. Annu. Rev. Ecol. 
Syst. 23: 237-261. 
  
Arnold, M. L. and S. A. Hodges, 1995  Are natural hybrids fit or unfit relative to their 
parents? Trends Ecol. Evol. 10: 67-71. 
   
Banfield, A. W. F. and N. S. Novakowski, 1960  The survival of the wood bison (Bison 
bison athabascae Rhoads) in the northwest territories. Natural History Papers, National 
Museum of Canada 8: 1-6. 
   
Barton, N. H. and M. Slatkin, 1986  A quasi-equilibrium theory of the distribution of 
rare alleles in a subdivided population. Heredity 56: 409-415. 
  
Berger, J. and C. Cunningham, 1994  Bison: Mating and Conservation in Small 
Populations. Columbia University Press, New York. 
  
Bishop, M. D., S. M. Kappes, J. W. Keele, R. T. Stone, S. L. F. Sunden, et al., 1994  A 
genetic linkage map for cattle. Genetics 136: 619-639. 
  
Bonnell, M. L. and R. K. Selander, 1974  Elephant seals: genetic variation and near 
extinction. Science 184: 908-909. 
  
Bork, A. M., C. M. Strobeck, F. C. Yeh, R. J. Hudson and R. K. Salmon, 1991  Genetic 
relationship of wood and plains bison based on restriction fragment length 
polymorphisms. Can. J. Zool. 69: 43-48. 
  
Botstein, D., R. L. White, M. Skolnick and R. W. Davis, 1980  Construction of a genetic 
linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. 
Genet. 32: 314-331. 
  
Bouzat, J. L., H. A. Lewin and K. N. Paige, 1998  The ghost of genetic diversity past: 
historical DNA analysis of the Greater Prairie Chicken. Am. Nat. 152: 1-6. 
  



158 

 

Boyd, M. M., 1908  A short account of an experiment in crossing the American bison 
with domestic cattle. Annu. Report of the Am. Breeders' Assoc.: 324-331. 
  
Boyd, M. M., 1914  Crossing bison and cattle. J. Hered. 5: 189-197. 
  
Bradley, D. G., D. E. MacHugh, P. Cunningham and R. T. Loftus, 1996  Mitochondrial 
diversity and the origins of African and European cattle. Proc. Natl. Acad. Sci. USA 96: 
5131-5135. 
  
Brownstein, M. J., J. D. Carpten and J. R. Smith, 1996  Modulation of non-templated 
nucleotide addition by Taq DNA polymerase: primer modifications that facilitate 
genotyping. Biotechniques 20: 1004-1010. 
   
Burton, M., 1962  Systematic Dictionary of Mammals of the World. Thomas Y. Crowell 
Co., New York. 
  
Burzyńska, B., W. Olech and J. Topczewski, 1999  Phylogeny and genetic variation of 
the European bison Bison bonasus based on mitochondrial DNA D-loop sequences. 
Acta. Theriol. 44: 253-262. 
  
Caballero, A., 1994  Developments in the prediction of effective population size. 
Heredity 73: 657-679. 
  
Carr, S. M., S. W. Ballinger, J. N. Derr, L. H. Blankenship and J. W. Bickham, 1986  
Mitochdonrial DNA analysis of hybridization between sympatric white-tailed deer and 
mule deer in west Texas. Proc. Natl. Acad. Sci. USA 83: 9576-9580. 
  
Cheville, N. F., D. R. McCullough and L. R. Paulson, 1998  Brucellosis in the Greater 
Yellowstone Area. National Academy Press, Washington, D. C. 
  
Christman, G. M., 1971  The mountain bison. The American West 8: 44-47. 
  
Coder, G. D., 1975 The national movement to preserve the American buffalo in the 
United States and Canada between 1880 and 1920. Ph.D. Dissertation (History). The 
Ohio State University, Columbus. 
  
Corbet, G. B., 1978  The mammals of the Paleoarctic Region: a taxonomic review. 
British Museum of Natural History, London. 
  
Corbet, G. B. and J. E. Hill, 1986  A World List of Mammalian Species. British Museum 
of Natural History, London. 
  
Couvet, D., 2002  Deleterious effects of restricted gene flow in fragmented populations. 
Conserv. Biol. 16: 369-376. 



159 

 

Dary, D. A., 1989  The Buffalo Book: The Full Saga of the American Animal. Swallow 
Press, Chicago. 
  
Davis, S. K., B. Read and J. Balke, 1988  Protein electrophoresis as a management tool: 
detection of hybridization between banteng (Bos javanicus d'Alton) and domestic cattle. 
Zoo Biol. 7: 155-164. 
  
DeYoung, R. W., S. Demarais, R. A. Gonzales, R. L. Honeycutt and K. L. Gee, 2002  
Multiple paternity in white-tailed deer (Odocoileus virginaianus) revealed by DNA 
microsatellites. J. Mammal. 83: 884-892. 
  
Dowling, T. E. and C. L. Secor, 1997  The role of hybridization and introgression in the 
diversification of animals. Annu. Rev. Ecol. Syst. 28: 593-619. 
 
El Mousadik, A. and R. J. Petit, 1996  High level of genetic differentiation for allelic 
richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to 
Morocco. Theor. Appl. Genet. 92: 832-839. 
  
Felsenstein, J., 1993 PHYLIP (Phylogeny Inference Package), v 3.5c. Distributed by the 
author. Department of Genetics, University of Washington, Seattle. 
  
Flores, D., 1991  Bison ecology and bison diplomacy: the southern plains from 1800 to 
1850. J. Am. Hist.: 465-485. 
  
Franklin, I. R., 1980  Evolutionary change in small populations, pp. 135-149 in 
Conservation Biology: An Evolutionary-Ecological Perspective, edited by M. E. Soulé 
and B. A. Wilcox. Sinauer Associates, Sunderland, MA. 
  
Fries, R., A. Eggen and J. E. Womack, 1993  The bovine genome map. Mamm. Genome 
4: 405-428. 
  
Garretson, M. S., 1938  The American Bison: The Story of its Extermination as a Wild 
Species and its Restoration under Federal Protection. New York Zoological Society, 
New York. 
  
Geist, V., 1991  Phantom subspecies: the wood bison Bison bison "athabascae" Rhoads 
1897 is not a valid taxon, but an ecotype. Arctic 44: 283-300. 
  
Geraads, D., 1992  Phylogenetic analysis of the tribe Bovini (Mammalia: Artiodactyla). 
Zool. J. Linn. Soc. - Lond. 104: 193-207. 
  
Goldstein, D. B., a. R. Linares, L. L. Cavalli-Sforza and M. W. Feldman, 1995  An 
evaluation of genetic distances for use with microsatellite loci. Genetics 139: 463-471. 
  



160 

 

Goldstein, D. B. and D. D. Pollock, 1997  Launching microsatellites: a review of 
mutation processes and methods of phylogenetic inference. J. Hered. 88: 335-342. 
  
Goldstein, D. B. and C. Schlötterer (Editors), 1999  Microsatellites: Evolution and 
Applications. Oxford University Press, Oxford. 
  
Goodnight, C., 1914  My experience with bison hybrids. J. Hered. 5: 197-199. 
  
Gottelli, D., C. Sillero-Zubiri, G. D. Applebaum, M. S. Roy, D. J. Girman, et al., 1994  
Molecular genetics of the most endangered canid: the Ethiopian wolf Canis simensis. 
Mol. Ecol. 3: 301-312. 
  
Goudet, J., 1995  FSTAT (vers. 1.2): a computer program to calculate F-statistics. J. 
Hered. 86: 485-486. 
  
Goudet, J., 2001 FSTAT, a program to estimate and test gene diversities and fixation 
indices, v 2.9.3. Available from http://www.unil.ch/izea/softwares/fstat.html, updated 
from Goudet (1995). 
 
Goudet, J., M. Raymond, T. De Meeüs and F. Rousset, 1996  Testing differentiation in 
diploid populations. Genetics 144: 1933-1940. 
  
Groves, C. P., 1981  Systematic relationships in the Bovini (Artiodactyla, Bovidae). Z. 
zool. Syst. Evolut. -forsch 19: 264-278. 
  
Guo, S. W. and E. A. Thompson, 1992  Performing the exact test of Hardy-Weinberg 
proportions for multiple alleles. Biometrics 48: 361-372. 
  
Guthrie, R. D., 1970  Bison evolution and zoogeography in North America during the 
pleistocene. Q. Rev. Biol. 45: 1-15. 
  
Haines, F., 1995  The Buffalo: The Story of American Bison and their Hunters from 
Prehistoric Times to the Present. University of Oklahoma Press, Norman. 
  
Haldane, J. B. S., 1922  Sex ratio and unisexual sterility in hybrid animals. Genetics 12: 
101-109. 
  
Haley, J. E., 1949  Charles Goodnight: Cowman and Plainsman. University of 
Oklahoma Press, Norman. 
  
Hall, E. R., 1981  The Mammals of North America. John Wiley and Sons, New York. 
 
Hartl, G. B., R. Goltenboth, M. Grillitsch and R. Willing, 1988  On the biochemical 
systematics of the Bovini. Biochem. Syst. Ecol. 16: 575-579. 



161 

 

Higgins, D. G. and P. M. Sharp, 1988  CLUSTAL: a package for performing multiple  
sequence alignment on a microcomputer. Gene 73: 237-244. 
 
Hoelzel, A. R., J. Halley, S. J. O'Brien, C. Campagna, T. Arnbom, et al., 1993  Elephant 
seal genetic variation and the use of simulation models to investigate historical 
population bottlenecks. J. Hered. 84: 443-449. 
 
Hornaday, W. T., 1913  Our Vanishing Wildlife: Its Extermination and Preservation. 
New York Zoological Society, New York. 
  
Janecek, L. L., R. L. Honeycutt, R. M. Adkins and S. K. Davis, 1996  Mitochondrial 
gene sequences and the molecular systematics of the Artiodactyl subfamily Bovinae. 
Mol. Phylogenet. Evol. 6: 107-119. 
  
Johnson, K. H. and C. E. Braun, 1999  Viability and conservation of an exploited sage 
grouse population. Conserv. Biol. 13: 77-84. 
  
Jones, C. J., 1907  Breeding cattelo. Annu. Report of the Am. Breeders' Assoc. 3: 161-
165. 
  
Kappes, S. M., J. W. Keele, R. T. Stone, R. A. McGraw, T. S. Sonstegard, et al., 1997  A 
second-generation linkage map of the bovine genome. Genome Res. 7: 235-249. 
  
Krumbiegel, I. and G. G. Sehm, 1989  The geographic variability of the plains bison. A 
reconstruction using the earliest European illustrations of both subspecies. Archives of 
Natural History 16: 169-190. 
  
Lacy, R. C., 1987  Loss of genetic diversity from managed populations: interacting 
effects of drift, mutation, immigration, selection, and population subdivision. Conserv. 
Biol. 1: 143-158. 
  
Lande, R., 1994  Risk of population extinction from fixation of new deleterious 
mutations. Evolution 48: 1460-1469. 
  
Lande, R. and G. F. Barrowclough, 1987  Effective population size, genetic variation, 
and their use in population management, pp. 87-123 in Viable Populations for 
Conservation, edited by M. E. Soulé. Cambridge University Press, Cambridge. 
  
Lewontin, R. C. and L. C. Birch, 1966  Hybridization as a source of variation for 
adaptation to new environments. Evolution 20: 315-336. 
  
Liu, W.-S., P. Mariani, C. W. Beattie, L. J. Alexander and F. A. P. d. Leon, 2002  A 
radiation hybrid map for the bovine Y chromosome. Mamm. Genome 13: 320-326. 
  



162 

 

Loftus, R. T., D. E. MacHugh, D. G. Bradley and P. M. Sharp, 1994  Evidence for two 
independent domestications of cattle. Proc. Natl. Acad. Sci. USA 91: 2757-2761. 
  
Marshall, T. C., J. Slate, E. B. Kruuk and J. M. Pemberton, 1998  Statistical confidence 
for likelihood-based paternity inference in natural populations. Mol. Ecol. 7: 639-655. 
  
Maudet, C., C. Miller, B. Bassano, C. Breitenmoser-Wursten, D. Gauthier, et al., 2002  
Microsatellite DNA and recent statistical methods in wildlife conservation management: 
applications in Alpine ibex [Capra ibex (ibex)]. Mol. Ecol. 11: 421-436. 
  
McClenaghan, L. R., Jr., J. Berger and H. D. Truesdale, 1990  Founding lineages and 
genic variability in plains bison (Bison bison) from Badlands National Park, South 
Dakota. Conserv. Biol. 4: 285-289. 
  
McDonald, J. N., 1981  North American Bison: Their Classification and Evolution. 
University of California Press, Berkeley. 
  
McHugh, T., 1958  Social behavior of the American buffalo (Bison bison bison). 
Zoologica - N. Y. 43: 1-40. 
  
McHugh, T., 1972  The Time of the Buffalo. University of Nebraska Press, Lincoln. 
  
McPhee, H. C., E. Z. Russel and J. Zeller, 1931  An inbreeding experiment with Poland 
China swine. J. Hered. 22: 383-403. 
  
Meagher, M. M, 1986  Bison bison. Mammalian Species 266: 1-8. 
  
Meagher, M. M., 1973  The Bison of Yellowstone National Park. National Park Service, 
Washington, DC. 
  
Mills, L. S. and F. W. Allendorf, 1996  The one-migrant-per-generation rule in 
conservation and management. Conserv. Biol. 10: 1509-1518. 
  
Mitchell, J. C., 1993  The way we shuffled off the buffalo. Wildlife Conserv.: 44-51. 
  
Miyamoto, M. M., S. M. Tanhauser and P. J. Laipis, 1989  Systematic relationships in 
the Artiodactyl tribe Bovini (family Bovidae), as determined from mitochondrial DNA 
sequences. Syst. Zool. 38: 342-349. 
  
Moffitt, S. A., 1998  Aging bison by the incremental cementum growth layers in teeth. J. 
Wildlife Manage. 62: 1276-1280. 
  
Mommens, G., A. Van Zeveren and L. J. Peelman, 1998  Effectiveness of bovine 
microsatellites in resolving paternity cases in American bison, Bison bison L. Anim. 



163 

 

Genet. 29: 12-18. 
  
Moore, S. S., L. L. Sargeant, T. J. King, J. S. Mattick, M. Georges, et al., 1991  The 
conservation of dinucleotide microsatellites among mammalian genomes allows the use 
of heterologous PCR primer pairs in closely related species. Genomics 10: 654-660. 
  
Morris, B., 1997  Current status of blood-typing and DNA testing in the American bison. 
Bison World: 37-38. 
 
National Park Service, 1996  The Jackson Bison Herd: Long Term Management Plan 
and Environmental Assessment. National Park Service, Washington, DC. 
 
Nei, M., 1972  Genetic distance between populations. The American Naturalist 106: 
283-292. 
  
Nei, M., 1987  Molecular Evolutionary Genetics. Columbia University Press, New York. 
  
Nei, M. and S. Kumar, 2000  Molecular Evolution and Phylogenetics. Oxford University 
Press, Oxford. 
  
Nei, M., T. Maruyama and R. Chakraborty, 1975  The bottleneck effect and genetic 
variability in populations. Evolution 29: 1-10. 
  
Nijman, I. J., D. G. Bradley, O. Hanotte, M. Otsen and J. A. Lenstra, 1999  Satellite 
DNA polymorphisms and AFLP correlate with Bos indicus-taurus hybridization. Anim. 
Genet. 30: 265-273. 
  
O'Brien, S. J. and J. F. Evermann, 1988  Interactive influence of infectious disease and 
genetic diversity in natural populations. Trends Ecol. Evol. 3: 254-259. 
  
O'Brien, S. J., M. E. Roelke, L. Marker, A. Newman, C. A. Winkler, et al., 1985  
Genetic basis for species vulnerability in the cheetah. Science 227: 1428-1434. 
  
O'Brien, S. J., D. E. Wildt, D. Goldman, C. R. Merril and M. Bush, 1983  The cheetah is 
depauperate in genetic variation. Science 221: 459-462. 
  
Olech, W., 1987  Analysis of inbreeding in European bison. Acta. Theriol. 32: 373-387. 
  
Painter, J. N., R. H. Crozier and M. Westerman, 1993  Molecular identification of a 
Mandrillus hybrid using mitochondrial DNA. Zoo Biol. 12: 359-365. 
  
Peden, D. G. and G. J. Kraay, 1979  Comparison of blood characteristics in plains bison, 
wood bison, and their hybrids. Can. J. Zool. 57: 1778-1784. 
  



164 

 

Petit, R. J., A. E. Mousadik and O. Pons, 1998  Identifying populations for conservation 
on the basis of genetic markers. Conserv. Biol. 12: 844-855. 
 
Polziehn, R. O., R. Beech, J. Sheraton and C. M. Strobeck, 1996  Genetic relationships 
among North American bison populations. Can. J. Zool. 74: 738-749. 
  
Polziehn, R. O., C. M. Strobeck, J. Sheraton and R. Beech, 1995  Bovine mtDNA 
discovered in North American bison populations. Conserv. Biol. 9: 1638-1643. 
  
Pritchard, J. K., M. Stephens and P. Donnelly, 2000  Inference of population structure 
using multilocus genotype data. Genetics 155: 945-959. 
  
Prodöhl, P. A., W. J. Loughry, C. M. McDonough, W. S. Nelson, E. A. Thompson, et 
al., 1998  Genetic maternity and paternity in a local population of armadillos assessed by 
microsatellite DNA markers and field data. Am. Nat. 151: 7-19. 
  
Pucek, Z., 1991  History of the European bison and problems of its protection and 
management, pp. 19-39 in Global trends in wildlife management, edited by B. Bobek, K. 
Perzanowski and W. L. Regelin. Swiat Press, Kraków, Poland. 
  
Ralls, K., K. Brugger and J. Ballou, 1979  Inbreeding and juvenile mortality in small 
populations of ungulates. Science 206: 1101-1103. 
  
Randi, E., M. Pierpaoli, M. Beaumont, B. Ragni and A. Sforzi, 2001  Genetic 
identification of wild and domestic cats (Felis silvestris) and their hybrids using 
Bayesian clustering methods. Mol. Biol. Evol. 18: 1679-1693. 
  
Raymond, M. and F. Rousset, 1995  GENEPOP (Version 1.2): population genetics 
software for exact tests and ecumenicism. J. Hered. 86: 248-249. 
  
Rhymer, J. M. and D. Simberloff, 1996  Extinction by hybridization and introgression. 
Annu. Rev. Ecol. Syst. 27: 83-109. 
  
Ritz, L., M. L. Glowatzki-Mullis and C. Gaillard, 1996  Genetic diversity in the Bovini. 
Anim. Genet. 27: 24. 
  
Ritz, L. R., M.-L. Glowatzi-Mullis, D. E. MacHugh and C. Gaillard, 2000  Phylogenetic 
analysis of the tribe Bovini using microsatellites. Anim. Genet. 31: 178-185. 
  
Roe, F. G., 1970  The North American Buffalo: A Critical Study of the Species in its Wild 
State. University of Toronto Press, Toronto. 
  
Roelke, M. E., J. S. Martenson and S. J. O'Brien, 1993  The consequences of 
demographic reduction and genetic depletion in the endangered Florida panther. Curr. 



165 

 

Biol. 3: 340-350. 
  
Rousset, F. and M. Raymond, 1995  Testing heterozygote excess and deficiency. 
Genetics 140: 1413-1419. 
 
Saccheri, I., M. Kuussaari, M. Kankare, P. Vikman, W. Fortelius, et al., 1998  
Inbreeding and extinction in a butterfly metapopulation. Nature 392: 491-494. 
  
Saitou, N. and M. Nei, 1987  The neighbor-joining method: a new method for 
phylogenetic inference packages using parsimony. Syst. Zool. 39. 
  
Sambrook, J., E. F. Fritsch and T. Maniatis, 1989  Molecular Cloning: A Laboratory 
Manual. Cold Spring Harbor Laboratory Press, Plainview, NY. 
  
Sartore, G., C. Stormont, B. G. Morris and A. A. Grunder, 1969  Multiple 
electrophoretic forms of carbonic anhydrase in red cells of domestic cattle (Bos taurus) 
and American buffalo (Bison bison). Genetics 61: 823-831. 
  
Schnabel, R. D., 2001 Developing DNA-based technologies in North American bison: 
parentage testing, linkage mapping and QTL scans. Ph.D. Dissertation (Genetics). Texas 
A&M University, College Station. 
  
Schnabel, R. D., T. J. Ward and J. N. Derr, 2000  Validation of 15 microsatellites for 
parentage testing in North American bison, Bison bison and domestic cattle. Anim. 
Genet. 31: 360-366. 
  
Senner, J. W., 1980  Inbreeding depression and the survival of zoo populations, pp. 209- 
224 in Conservation Biology: An Evolutionary-Ecological Perspective, edited by M. E.  
Soulé and B. A. Wilcox. Sinauer Associates, Sunderland, MA. 
   
Seton, E. T., 1937  Lives of Game Animals. Literary Guild of America, New York. 
  
Simberloff, D., 1996  Hybridization between native and introduced wildlife species: 
importance for conservation. Wildlife Biol. 2: 143-150. 
  
Simpson, G. G., 1961  Principles of Animal Taxonomy. Columbia University Press, New 
York. 
  
Slatkin, M., 1985  Rare alleles as indicators of gene flow. Evolution 39: 53-65. 
  
Soulé, M. E., 1980  Thresholds for survival: maintaining fitness and evolutionary 
potential, pp. 151-169 in Conservation Biology: An Evolutionary-Ecological 
Perspective, edited by M. E. Soulé and B. A. Wilcox. Sinauer Associates, Sunderland, 
MA. 



166 

 

Spielman, D. and R. Frankham, 1992  Modeling problems in conservation genetics using 
captive Drosophila populations: improvement of reproductive fitness due to immigration 
of one individual into small partially inbred populations. Zoo Biol. 11: 343-351. 
  
Spieth, P. T., 1974  Gene flow and genetic differentiation. Genetics 78: 961-965. 
  
Steklenev, E. P. and N. I. Yasinetskaya, 1982  Results of crossing of the bison (Bison 
bison bison L.) with the domestic cow (Bos (Bos) taurus typicus) and characteristics of 
the chromosome complexes of the hybrid progeny. Tsitol. Genet. 16: 28-33. 
  
Steklenev, E. P., N. I. Yasinetskaya and V. K. Nechiporenko, 1986  Spontaneous 
variability and associative ability of chromosomes of hybrids of bison with domestic 
cattle. Tsitol. Genet. 20: 284-287. 
  
Stormont, C., W. J. Miller and Y. Suzuki, 1961  Blood groups and the taxonomic status 
of American buffalo and domestic cattle. Evolution 15: 196-208. 
  
Swepston, D. A., 2001 Texas State Bison Herd, 2nd annual report. Texas Parks & 
Wildlife, Austin. 
  
Swofford, D. L., 1999 PAUP*.-Phylogenetic Analysis Using Parsimony (*and other 
methods), v 4. Sinauer Associates, Sunderland, MA. 
  
van Camp, J., 1989  A surviving herd of endangered wood bison at Hook Lake, N.W.T.? 
Arctic 42: 314-322. 
  
van Gelder, R. G., 1977  Mammalian hybrids and generic limits. Am. Mus. Novit. 2635: 
1-25. 
  
van Zyll de Jong, C. G., C. Gates, H. Reynolds and W. Olson, 1995  Phenotypic 
variation in remnant populations of North American bison. J. Mammal. 76: 391-405. 
  
Vucetich, J. A. and S. Creel, 1999  Ecological interactions, social organization, and 
extinction risk in African wild dogs. Conserv. Biol. 13: 1172-1182. 
  
Wall, D. A., S. K. Davis and B. M. Read, 1992  Phylogenetic relationships in the 
subfamily Bovinae (Mammalia: Artiodactyla) based on ribosomal DNA. J. Mammal. 73: 
262-275. 
  
Ward, T. J., 2000 An Evaluation of the Outcome of Interspecific Hybridization Events 
Coincident With a Dramatic Demographic Decline in North American Bison. Ph.D. 
Dissertation (Genetics). Texas A&M University, College Station. 
  
Ward, T. J., J. P. Bielawski, S. K. Davis, J. W. Templeton and J. N. Derr, 1999  



167 

 

Identification of domestic cattle hybrids in wild cattle and bison species: a general 
approach using mtDNA markers and the parametric bootstrap. Anim. Conserv. 2: 51-57. 
  
Ward, T. J., L. C. Skow, D. S. Gallagher, R. D. Schnabel, C. A. Null, et al., 2001  
Differential introgression of uniparentally inherited markers in bison populations with 
hybrid ancestries. Anim. Genet. 32: 89-91. 
  
Wayne, R. K. and S. M. Jenks, 1991  Mitochondrial DNA analysis implying extensive 
hybridization of the endangered red wolf Canis rufus. Nature 351: 565-568. 
  
Weir, B. S., 1996  Genetic Data Analysis II: Methods for Discrete Population Genetic 
Data. Sinauer Associates, Inc., Sunderland, MA. 
  
Weir, B. S. and C. C. Cockerham, 1984  Estimating F-statistics for the analysis of 
population structure. Evolution 38: 1358-1370. 
  
Wilson, D. E. and D. M. Reeder (Editors), 1993  Mammal Species of the World: A 
Taxonomic and Geographic Reference. Smithsonian Inst. Press, Washington, D.C. 
  
Wilson, G. A. and C. M. Strobeck, 1999  Genetic variation within and relatedness 
among wood and plains bison populations. Genome 42: 483-496. 
  
Wisely, S. M., S. W. Buskirk, M. A. Fleming, D. B. McDonald and E. A. Ostrander, 
2002  Genetic diversity and fitness in black-footed ferrets before and during a 
bottleneck. J. Hered. 93: 231-237. 
  
Wright, S., 1931  Evolution in Mendelian populations. Genetics 16: 97-159. 
  
Wyckoff, D. G. and W. W. Dalquest, 1997  From whence they came: the paleontology 
of southern plains bison. Plains Anthropol. 42: 5-32. 
  
Ying, K. L. and D. G. Peden, 1977  Chromosomal homology of wood bison and plains 
bison. Can. J. Zool. 55: 1759-1762. 
  
Zontek, K., 1995  Hunt, capture, raise, increase: the people who saved the bison. Great 
Plains Quart. 15: 133-149. 
  



 

 

168

APPENDIX A 

COMPARATIVE ALLELE SIZES FOR ABI 377, 310, AND 3100 GENETIC ANALYZERS FOR 54 POLYMORPHIC 

MICROSATELLITES UTILIZED 

 

Locus name and called allele sizes are listed on the first line, followed by designations for type of genetic analyzer.  

Ranges for allele sizes are approximate and not available in every case.  Primers are assumed to be nontailed (nt) and identical 

to those sequences found at www.sol.marc.usda.gov, unless noted by the “tailed” designation.  See Chapter II for details. 

AGLA232 155 159 161 165 167 169 173     

377   161.43-
161.63 

165.0-
165.58 

167.43-
167.56 

169.4-
169.58 

173.38-
173.55     

310   159.02-
159.33 

162.99-
163.37 165.11 167.06-

167.1 
171.17-
171.28     

3100 152.72-
153.37 

156.59-
156.87 

158.26-
159.12 

162.09-
163.15 

164.7-
164.92 

166.56-
167.13 

170.64-
171.21     

            
BL1036 177 179 181 191 193       

377 177.05-
177.27 

179.15-
179.27 

180.94-
181.27 

190.92-
191.13        

310 174.47-
174.83 176.59 178.27-

178.91 
188.38-
188.81        

3100 173.33-
174.97 

175.71-
176.54 

177.39-
178.49 

187.44-
188.77 

189.58-
190.55       

            
            
            
            
            
            



 

 

169

BM1225 239 241 245 247 249 253 265 269 271 273  

310 239.88-
240.65 

241.86-
243.43   250.09-

250.97 
254.01-
254.89 

266.53-
267.27 

270.52-
271.31 

272.44-
273.42   

3100 239.37-
240.25 

241.39-
242.66 

245.8-
245.89 

247.78-
248.03 

249.68-
250.16 

253.56-
254.56 

266.04-
266.32 

269.92-
270.92 

271.95-
272.48 

274.13-
274.49  

            
BM1706 232 238 252 254 246 250      

310 231.41-
232.49 

237.08-
238.56 

251.06-
252.12 

253.03-
254.12 245.98 249.44-

249.58      

3100 230.73-
231.66 

236.52-
237.88 

250.55-
251.21 

252.5-
252.93 

244.71-
245.23 

248.76-
249.35      

            
BM17132 85 87 89 91 95       

310 77.63-
78.86 

79.62-
80.97 

81.73-
82.79 

83.78-
84.54 

87.72-
89.01       

3100 77.68-
78.27 

79.64-
80.31 

81.76-
82.36 

83.79-
84.38 

88.13-
88.6       

            
BM1824 178 180 184 190 192 196 198     

377  179.27-
180.0 

183.52-
183.85 

189.9-
190.7 

191.95-
192.28 

196.16-
197.22 

198.17-
199.32     

310  178.27-
178.68 

182.65-
182.93 

189.04-
189.26 

191.2-
191.46 

195.49-
195.8 

197.61-
198.0     

3100 175.1-
175.65 

176.92-
178.02 

181.52-
182.08 

187.91-
188.41 

190.0-
190.79 

194.26-
195.01 

195.83-
197.22     

            
BM1862 201 202 205 207 211 215      

377 201.17-
201.35 

202.25-
202.44 

204.76-
205.59 

207.27-
207.66 

210.87-
211.73       

310  200.93-
201.4 

203.2-
204.26 

205.96-
206.39 

210.08-
210.41       

3100 198.55-
199.32 

199.73-
200.3 

202.69-
203.39 

204.55-
205.47 

208.74-
209.45 

212.86-
213.6      
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BM188 99 105 109 113 115 117 119 121 123   

377 98.11-
98.33   112.96-

113.63 
115.02-
115.87 

117.22-
117.98 

119.3-
119.78 

121.49-
121.81 

123.51-
123.92   

310 96.58    113.99-
114.19 

116.18-
116.48 

118.58-
118.64 

120.74-
121.04 

123.06-
123.2   

3100 95.33-
96.17 

101.68-
102.32 

106.62-
106.71 

110.52-
111.24 

112.69-
113.48 

114.73-
115.9 

117.42-
117.65 

119.47-
120.24 122.01   

            
BM1905 172 176 182 184        

310 170.82-
171.65 

174.67-
175.67 

180.66-
181.58 

183.29-
183.43        

3100 170.27-
171.27 

174.11-
175.59 

180.26-
180.92 

182.45-
183.23        

            
BM2113 127 129 133 135 143 145 149 153    

310 123.42-
124.01 

125.3-
126.33 

129.38-
130.71 

131.44-
132.25 

139.46-
140.39 

141.53-
142.23 

145.18-
145.91     

3100 123.05-
123.47 

124.85-
125.54 

128.79-
129.47 

130.44-
131.49 

138.37-
140.16 

140.53-
141.76 

144.22-
145.08 

148.07-
148.93    

            
BM2830 142 146 148 150 152 156 158 162 164   

377 142.38-
142.91 

148.24-
148.47 

150.14-
150.35 

152.19-
152.67 

153.97-
154.37 

158.44-
158.5 

160-
160.41 

164.2-
164.4 

165.92-
166.21   

3100 139.27-
140.15 

144.61-
145.33 

146.73-
147.46 

148.67-
149.22 

150.42-
151.71 

154.67-
155.18 

156.14-
157.04 

160.24-
160.77 

162.06-
162.77   

            
BM4028 108 114 116 118 122 126      

377 107.57-
107.89 

113.98-
114.28 

116.1-
116.41 

118.27-
118.51        

310 105.77-
105.93 

112.51-
112.52 

114.43-
115.05 

116.17-
117.63        

3100 104.92-
105.29 

111.49-
111.98 

113.7-
114.2 

116.0-
116.56 

120.71-
120.95 

124.79-
126.03      

            
            
            
            
            
            



 

 

171

BM4107 159 165 173 175 179 181 183 185    

377  165.16-
165.39   180.0-

180.11 
182.07-
182.24 

184.14-
184.39 

186.26-
186.42    

310  163.09-
163.46   178.04-

178.72 
180.0-
180.43 

182.39-
182.62     

3100 156.33-
156.44 

161.98-
163.15 

171.03-
171.41 

172.87-
174.06 

177.13-
177.87 

179.33-
180.23 

181.43-
182.57 

183.86-
183.93    

            
BM4311 90 92 96 98 102 104      

377 90.57-
90.91 

92.38-
92.84 

96.2-
96.77 

97.88-
98.67 

101.79-
102.99 

104.12-
104.7      

310 86.72-
86.79 

88.8-
88.91 

92.69-
92.89 

94.54-
94.78 

98.17-
98.57 

100.0-
10.51      

3100 85.79-
86.33 

87.91-
88.42 

91.94-
92.38 

93.76-
94.3 

97.59-
98.1 

99.22-
100.08      

            
BM4440 123 125 127 129 131 133 143     

310 123.82-
124.28 

125.93-
126.7 

128.21-
128.81 

130.39-
131.16 

132.78-
133.22 

135.23-
135.31 

145.35-
145.7     

3100 123.14-
123.76 

124.98-
126.51 

127.05-
128.28 

129.22-
130.44 

131.45-
132.56 

133.64-
134.14 

144.07-
144.9     

            
BM47 103 105 107 111        

377 103.39-
103.64 

105.5-
105.73 

107.65-
107.84         

310 102.7-
102.94 

104.92-
105.06          

3100 102.01-
102.59 

104.36-
104.67 

106.62-
106.81 

109.94-
110.03        

            
BM6017 104 114 116 118 120 122      

377 104.05-
104.39 

114.22-
114.33 

115.82-
116.45 

117.48-
118.45 

119.78-
120.44 

122.15-
122.44      

310 100  112.23-
112.5 

114.33-
114.68 

116.42-
116.65 

118.62-
118.73      

3100 99.07-
99.71 

109.32-
109.76 

111.25-
111.9 

113.23-
113.99 

115.47-
115.91 

117.6-
117.95      

            
            
            



 

 

172

BM711 161 163 165 167 175 177      

377 159.51-
160.61  163.85-

164.8 
166.07-
166.45 

174.44-
174.78       

310 156.9-
158.18  161.79-

162.08 
163.09-
164.31 

172.43-
172.82       

3100 156.58-
157.33 

158.91-
159.26 

160.9-
161.4 

162.71-
163.59 

171.61-
171.95 

173.62-
174.14      

            
BM720 203 213 223 225 227 229 231 233 235   

310 205-
205.14 

214.51-
215.55  224.88-

226.01 
227.13-
228.1 

229.26-
230.29 

231.33-
232.58 

233.52-
234.59 

235.63-
236.7   

3100 203.89-
204.75 

214.11-
214.67 

222.37-
222.77 

224.39-
225.7 

226.59-
227.1 

228.62-
229.37 

230.74-
231.54 

233.02-
234.18 

235.16-
235.57   

            
BM757 186 188 190 192 194 196 198 200 202   

377   190.3-
190.42 

192.42-
192.69 

194.39-
194.72 

196.58-
196.82  200.69-

201.0    

310    191.49 193.2-
193.66 

195.44-
195.81  199.67-

200.1    

3100 183.72-
184.74 

185.54-
185.96 

187.89-
188.31 

189.83-
190.41 

191.62-
192.9 

194.11-
194.93 

196.33-
196.78 

198.45-
199.21 

200.57-
201.09   

            
BMC4214 175 179 181 185 187 191      

377 174.64-
175.37 

178.82-
180.0 

180.95-
181.6 

185.17-
185.94 

187.27-
187.54       

310 173.77-
174.01 

178.16-
178.31 

180.32-
180.73 

184.56-
184.78 

186.69-
187.08       

3100 172.59-
173.29 

176.56-
177.69 

178.91-
179.84 

183.41-
184.15 

185.46-
186.26 

189.92-
190.08      

            
BMS1001 107 109 111 113 115       

377 106.58-
106.7 

108.12-
108.39 

110.27-
110.5 

112.9-
113.35 

114.86-
115.14       

310 104.12 105.11-
105.8 107.81 110.67-

111.09 
112.45-
112.99       

3100 103.25-
104.17 

104.68-
105.55 

106.91-
107.8 

109.72-
110.8 

111.75-
113.03       
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BMS1074 152 154 156 158 160       

377  153.37-
153.59 

155.24-
156.67 

157.22-
157.4 

159.04-
159.31       

310  150.94-
151.27 

152.83-
153.12 

154.61-
154.88 

156.4-
156.8       

3100 148.63-
148.88 

150.19-
151.09 

152.1-
153.08 

154.02-
154.83 

155.87-
156.67       

            
BMS1117 89 91 93 99        

377 87.94-
88.96 

89.77-
91.03 

91.4-
92.89 

97.69-
97.97        

310 84.43-
85.68 

86.48-
87.62 

88.5-
89.61 

94.63-
94.68        

3100 83.79-
85.03 

85.73-
87.07 

88.04-
89.46 

92.97-
94.32        

            
BMS1172 86 88 90 92 100 102 104     

377 (nt)  86.01-
87.12 

87.84-
89.3 

90.0-
90.58 

97.9-
98.89 

100-
100.83 

102.13-
102.73     

310 (nt)  82.47-
83.22 

84.22-
85.68 

87.1-
87.67 

94.51-
95.15 

96.53-
97.18 

98.57-
99.01     

3100 (nt)  82.16-
82.66 

84.24-
84.64 

86.58-
86.61 

94.26-
94.54 

96.13-
96.35 

98.0-
98.34     

3100 (tail) 87.16 88.99-
89.46 

90.53-
91.38 

92.92-
93.24 

100.39-
100.85 

102.48-
102.78 

104.57-
104.85     

            
BMS1315 135 137 141 147 149       

377 134.3-
134.68 

136.34-
136.84 

140.76-
141.01 

146.99-
147.23        

310 133.36-
133.67 

135.54-
135.69 

139.9-
140.1 

146.01-
146.14        

3100 131.47-
132.8 

133.61-
134.91 

137.79-
139.17 

144.25-
145.58 

146.4-
147.28       

            
BMS1355 146 148 150 154        

377 146.52-
147.12 

148.57-
148.94 

150.32-
150.8 154.52        

310 143.79-
144.51 

145.62-
145.95 

147.43-
148.0 

151.4-
151.55        

3100 143.05-
144.0 

144.89-
145.74 

146.86-
147.66 

150.78-
151.33        
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BMS1675 85 87 89 91        

377 84.89 86.02-
87.21 

89.12-
89.31 

91.21-
91.6        

310  85.84-
85.99 

88.09-
88.27 

90.37-
90.47        

3100 82.7-
83.38 

84.9-
85.55 

87.29-
87.8 

89.45-
90.07        

            
BMS1716 185 189 191 193 195 197      

377  188.57-
188.82 

190.0-
190.9 

192.77-
192.86 

194.87-
195.17       

310  187.93-
188.53 

190.0-
190.54 192.1 194.31-

194.9       

3100 182.5-
182.96 

186.48-
187.54 

188.55-
189.69 

190.84-
191.8 

192.77-
193.97 

195.47-
195.63      

            
BMS1747 89 95 99 101 103       

377  94.33-
94.75 98.5-99.2 100.58-

101.02 
102.69-
103.24       

310  92.9-93.1 97.04-
97.3 

99.16-
99.46 

101.28-
101.37       

3100 85.8-
86.11 

92.22-
92.61 

96.44-
96.72 

98.46-
99.37 

100.68-
100.9       

            
BMS1857 142 146 148 150 156 158 160 162 164 168  

377 142.01-
142.27   150.09-

150.42 
156.2-
156.65 

157.8-
158.54 

159.8-
160.32   168.08-

168.41  

310 138.75-
139.17   146.75-

147.08 
152.63-
152.97 

154.1-
155.02 

156.76-
157.21   164.17-

164.43  

3100 137.82-
139.28 

141.49-
142.56 

143.08-
144.8 

146.22-
147.26 

152.34-
153.36 

153.83-
155.28 

156.19-
157.63 

158.7-
159.55 

161.04-
161.48 

163.3-
164.89  

            
BMS1862 142 144 156 158 160 162 164 166 167 168 170 

310 140.41-
142.09  154.74-

155.07 
156.1-
157.62 

158.31-
159.6 

160.43-
161.78 

162.06-
163.34 

164.46-
165.49  166.55-

167.72 
168.63-
169.11 

3100 139.54-
141.15 

142.43-
142.87 

153.98-
154.76 

155.2-
156.63 

157.16-
159.07 

159.84-
160.47 

161.73-
162.82 

164.01-
164.46 

164.99-
165.15 

166.01-
166.9 

168.12-
169.17 
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BMS2258 127 134 136 138 140 142 144 146 148 150  

377 127.12-
127.44    139.89-

140.42 
141.87-
142.49  146.18 148.07-

148.75 
150.14-
150.69  

310 125.77-
126.22    139.02-

139.39 
141.03-
141.44   147.27-

147.47 
149.16-
149.46  

3100 124.61-
125.2 

131.54-
131.7 

133.63-
134.02 

135.52-
136.19 

137.64-
138.43 

139.76-
140.43 

141.84-
142.47 

143.3-
144.55 

145.76-
146.57 

147.91-
148.6  

            
BMS2639 168 170 172 174 176 178 186     

377 167.43-
168.39 

169.37-
170.36 

171.35-
172.83 

173.46-
173.91 

175.35-
175.9 

177.23-
177.81 

185.31-
185.79     

310 164.67-
165.76 

166.96-
167.59 

168.95-
169.49 

171.21-
171.56 

173.19-
173.34 

175.13-
175.45 

183.23-
183.48     

3100 163.75-
164.66 

165.79-
166.56 

167.69-
168.6 

169.93-
170.67 

171.86-
172.68 

173.79-
174.64 

182.0-
182.59     

            
BMS410 83 85 89 97 93 95      

310 (nt) 80.1-81.0 82.73-
83.13 

87.14-
87.52 

95.82-
95.99        

310 (tail) 86.2-
87.01 

88.87-
89.09 

92.75-
93.43 

101.41-
101.71 

97.41-
97.51 99.3      

3100 (tail) 86.26-
87.17 

88.71-
89.1 

92.79-
93.53 

101.23-
101.57 

97.25-
97.47 

99.22-
99.64      

            
BMS510 91 92 94 95        

377 91.76-
92.05 

92.69-
92.84 

94.79-
94.97 

95.95-
96.14        

310 89.69-
90.0 

90.59-
90.83 

92.69-
92.9 

93.87-
94.12        

3100 89.15-
90.07 

90.22-
90.82 

92.41-
92.73 

93.01-
93.98        

            
BMS527 159 163 165 167 171 173 175 177    

310 (nt)  159.8-
160.11  163.69-

163.99  169.54-
170.33 

171.67-
172.36 

173.49-
174.37    

310 (tail)  165.81-
166.21 

167.83-
168.18 

169.92-
170.61  175.77-

176.74 
177.72-
178.75 

179.77-
180.83    

3100 (tail) 161.51-
161.86 

165.44-
166.01 

167.48-
167.92 

169.33-
170.33 

173.54-
173.73 

175.14-
176.17 

177.14-
178.5 

179.42-
180.07    
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BMS528 140 146 148 150 152       

377 139.89-
140.22 

145.79-
146.44 

148.11-
148.51 

150.19-
150.57 

152.28-
152.25       

310 139.9-
140.0 

145.84-
146.19 

147.81-
148.22 

149.89-
150.04 

151.88-
152.06       

3100 138.55-
139.26 

144.67-
145.37 

146.78-
147.22 

148.72-
149.52 

150.83-
151.22       

            
BMS601 172 174 176 178 180       

377 171.12-
171.65 

173.21-
174.16 

175.39-
176.13 

177.41-
178.07 

179.68-
180.6       

310 170.61-
171.1 

171.95-
173.2 

174.97-
175.4 

177.01-
178.29 

179.45-
180       

3100 169.5-
170.51 

171.65-
172.52 

173.8-
174.58 

175.96-
176.69 

178.01-
178.89       

            
BMS812 90 96 106 108 110 112 122     

377 91.07-
91.27  106.51-

106.89 
108.51-
108.78 

110.57-
110.75 

112.52-
112.75      

310 88.03-
88.26  101.79-

102.15 
103.54-
104.15  107.43-

107.75      

3100 87.75-
88.52 

92.69-
93.17 

101.83-
103.06 

103.95-
105.04 

106.06-
106.69 

107.37-
108.73 

116.99-
117.76     

            
BMS911 100 102 104 106 112       

377 99.06-
99.36 

100.8-
101.39 

102.51-
103.32 

104.75-
105.18        

310 96.04-
96.24 98.06 99.8-100 101.77-

101.87        

3100 95.31-
95.88 

97.25-
97.64 

98.95-
99.85 

100.94-
101.48 

106.83-
107.46       

            
BMS941 81 83 85         

377 80.61-
80.97 

82.01-
83.07 

85.07-
85.14         

310 78.38-
78.68 

80.61-
81.09 

82.99-
83.06         

3100 77.82-
78.75 

79.93-
80.92 

82.78-
83.05         
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HUJ246 242 252 256 258 260 262 264     

377    258.41-
258.68 

259.47-
260.56 

261.36-
262.55 

264.14-
264.36     

310    256.56-
257.66 

259.23-
259.47 

260.43-
261.51 

262.36-
263.27     

3100 241.28-
242.06 

251.13-
251.29 

254.76-
255.59 

256.73-
257.58 

258.01-
259.33 

259.91-
261.66 

262.49-
263.11     

            
IL4 83 85 89 91 93 95 97 99 103 105  

377 83.11-
83.35  89.13-90  93.12-

93.32  96.93-
97.19 

98.94-
99.12 

102.78-
103.09 

104.79-
105.03  

310 79.91-80  85.94-
86.11  90.09-

90.19  93.8-
93.99 

95.74-
95.89 

98.99-
99.64 

101.49-
101.59  

3100 78.88-80 80.89-
81.54 

85.2-
85.67 

87.09-
87.73 

88.91-
89.92 

91.12-
91.68 

93.02-
93.62 

95.07-
95.69 

98.82-
99.24 

100.76-
101.95  

            
ILSTS102 113 133 143 145 147 153      

377   142.92-
143.18 

144.84-
145.13 

146.78-
147.04       

310   141.08-
141.57 

143.18-
143.41 

145.01-
145.33       

3100 110.4-
110.86 

130.58-
131.33 

139.7-
141.21 

141.83-
143.14 

143.49-
145.05 

150.22-
150.49      

            
INRA037 118 120 122 124 126 132      

377 117.72 119.65-
120 

121.34-
122.26 

123.66-
124.48 

126.32-
126.35 

132.48-
133.01      

310  115.86-
116.19 

118.1-
118.68 

120.43-
120.88  129.39-

129.44      

3100 113.7-
114.35 

115.84-
116.53 

118.11-
118.83 

120.31-
121.15 

122.72-
123.6 

129.16-
129.68      

            
INRA133 223 227 234 236 238 240      

377 223.29-
223.43 

227.49-
227.75  235.79-

236.05 
237.97-
238.07 

240.0-
240.3      

310 222.31 226.24-
226.74  234.88-

235.3 237.01 239.19-
240.31      

3100 221.23-
222.04 

225.0-
225.83 

231.75-
232.04 

233.62-
234.4 

235.89-
236.44 

237.14-
238.7      
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INRA189 96 100          

3100            

            
INRA194 144 154 156 158 160       

377 143.64-
144.09 

153.24-
154.37 

155.33-
156.49 

158.25-
158.5 

160.32-
160.42       

310 142.86 152.81-
152.98 

154.87-
155.07 156.93        

3100 141.24-
142.03 

151.16-
152.42 

153.4-
154.19 

155.38-
156.13 

157.73-
158.17       

            
RM372 114 118 128 130 132 134 136 138    

377 113.9-
113.94 

117.68-
118.04  129.52-

129.67 131.57 133.43-
133.57      

310 110.44-
111.06 

114.1-
115.18 

124.76-
125.43 

126.49-
127.97 

128.86-
129.76 

130.68-
131.79 

132.92-
134.03 

134.89-
135.84    

3100 110.38-
110.72 

113.9-
115.1 

124.48-
125.39 

126.33-
127.4 

128.25-
129.13 

130.21-
131.69 

132.17-
133.16 

134.11-
135.04    

            
TGLA122 136 140 142 144 148 150      

377 135.7-
135.88 

139.89-
140.11 

141.94-
142.22  148.15-

148.63 
150.18-
150.66      

310 134.48-
134.67 

138.93-
139.08 

140.99-
141.24  147.05-

147.27 
149.0-
149.31      

3100 133.61-
133.9 

137.61-
138.41 

139.66-
140.65 

142.39-
142.48 

145.9-
146.74 

147.79-
148.74      

            
TGLA44 149 151 153 155 157 159      

377 148.83-
149.22 

150.0-
151.12 

152.92-
153.81 

154.04-
155.27 

157.09-
157.3 

159.06-
159.3      

310 148.62-
148.96 

150.62-
150.96 

152.63-
153.16 

154.59-
155.13 156.67 158.6-

158.92      

3100 148.02-
148.41 

149.91-
150.53 

151.53-
152.72 

153.2-
154.68 

155.94-
156.7 

157.24-
158.66      
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TGLA53 132 134 136 138 140 142      

377  133.94-
134.7 

136.13-
136.78  140.62-

140.75       

310  131.86-
132.3 

134.02-
134.26         

3100 129.09-
129.4 

130.97-
131.7 

133.05-
133.93 

135.29-
135.6 

137.22-
137.79 

139.45-
139.77      

            
URB011 139 143 145 147 149 151 153 155    

377  142.68-
142.89 

144.71-
144.94 

146.77-
147.01 

148.75-
149.12 

150.88-
151.15 

152.81-
153.27     

310  141.16 143.18-
143.22 

145.13-
145.23 

147.14-
147.29 

149.18-
149.31 

151.24-
151.83     

3100 136.28-
136.36 

140.36-
140.66 

142.27-
142.83 

144.25-
144.73 

146.37-
146.81 

148.42-
148.79 

150.52-
151.15 

152.55-
153.11    
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APPENDIX B 

ALLELE FREQUENCIES FOR 54 POLYMORPHIC LOCI ACROSS 11 BISON 

POPULATIONS 

 

 Called allele sizes shown in leftmost column with frequencies as percentages.  

See Table 1 for population abbreviations.  Bold highlights indicate private alleles. 

AGLA232 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 
155 6.07 8.90   8.16  5.02  15.92   
159           0.21 
161 14.92 5.21 34.62 60.07 19.39 10.04 19.59 37.50 9.76 52.86 29.63 
165 60.98 68.71 15.38 34.90 64.29 70.08 60.50 62.50 47.43 21.43 51.75 
167   1.28        2.88 
169 5.57 5.21  1.68 4.08 8.07 10.19  9.76 24.29 4.94 
173 12.46 11.96 48.72 3.36 4.08 11.81 4.70  17.12 1.43 10.60 

            
BL1036 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 

177 4.81 11.14 10.26 4.00 12.24 17.72 9.72  10.17  18.03 
179    21.67 5.10    26.03  2.97 
181 1.28 13.25 15.38 37.00 30.61  3.13  24.66 55.71 26.84 
191 44.07 50.90 42.31 27.33 36.73 27.80 49.53 42.50 19.66 10.00 52.15 
193 49.84 24.70 32.05 10.00 15.31 54.48 37.62 57.50 19.48 34.29  

            
BM1225 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 

239 23.86 13.64  2.65 8.51 28.81 8.70  17.91   
241 41.72 60.30 30.26 39.40 65.96 16.73 49.33 45.00 31.03 74.29 43.84 
245    0.99        
247    7.62        
249    7.28 1.06  3.68  5.32  0.82 
253 22.73 5.15 7.89 10.60 2.13 10.04 11.87 15.00 20.92 14.29 19.20 
265 1.14 2.42       9.75   
269 10.55 18.18 35.53 21.85 15.96 44.42 23.58 40.00 6.21 5.71 9.34 
271   26.32    2.84  8.87 5.71 26.80 
273  0.30  9.60 6.38       

            
BM1706 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 

232 18.14 13.80 6.41 28.48 18.18 17.78 6.33 12.50 16.43  5.65 
238 76.80 67.18 75.64 66.56 71.59 82.22 83.83 77.50 54.24 82.86 76.18 
246         1.24 1.43  
250        10.00  1.43 0.62 
252 5.07 19.02 17.95 4.97 10.23  9.17  1.41 14.29 14.89 
254       0.67  26.68  2.67 

            
BM17132 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 

85 3.77 17.37 23.08 16.11 29.17 6.32 12.58 2.50 41.47 72.86 39.22 
87 27.87 16.77 44.87 37.92 19.79 51.67 46.12 3.75 36.86 1.43 15.40 
89 61.97 53.29 20.51 45.97 39.58 32.34 29.19  21.67 14.29 29.16 
91 6.39 12.57 7.69  11.46 9.67 12.11 93.75  11.43 2.67 
95   3.85        13.55 
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BM1824 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 
178  6.06   11.46 0.77 3.37     
180 17.50 24.85 29.49 19.93 21.88 37.16 11.35 27.50 49.65 2.94 38.18 
184   2.56 13.29 4.17    1.56 47.06 18.41 
190   21.79 8.04 3.13      6.07 
192 8.17 3.33  18.18 1.04  4.43  29.51  9.10 
196 24.67 22.12 12.82 34.97 7.29 7.09 20.57  6.42 22.06 4.18 
198 49.67 43.64 33.33 5.59 51.04 54.98 60.28 72.50 12.85 27.94 24.06 

            
BM1862 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 

201 13.83 6.97  9.52 15.63 17.66 14.35  11.38 10.29 1.23 
202 4.18 0.91  1.36 1.04    5.52 11.76 4.73 
205 5.14 13.03 15.79 59.52 30.21 16.17 16.05 77.50 29.66 10.29 38.79 
207 45.82 52.12 25.00 4.08 39.58 32.90 29.01 8.75 15.52 44.12 29.32 
211 6.11 18.79 59.21 25.51 10.42 2.04 17.28  37.93 17.65 25.93 
215 24.92 8.18   3.13 31.23 23.30 13.75  5.88  

            
BM188 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 

99 9.15  3.85  1.02 3.15 0.46 25.00  18.57 14.48 
105         2.25   
109         1.04 1.43  
113         9.17  0.92 
115 10.78 16.27 7.69 30.33 22.45  4.63 6.25 21.80 22.86 29.36 
117 75.33 83.13 58.97 38.00 73.47 96.85 91.67 40.00 40.48 54.29 31.72 
119    4.00 2.04      4.00 
121 4.74 0.60 29.49 27.67 1.02  3.24 28.75 25.26 1.43 17.25 
123          1.43 2.26 

            
BM1905 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 

172 64.56 83.53 37.18 17.88 66.67 54.85 64.45 5.00 18.73 45.71 6.57 
176 35.44 16.47 61.54 61.92 22.92 45.15 31.06 48.75 81.27 35.71 78.95 
182   1.28 2.65   2.16    14.48 
184    17.55 10.42  2.33 46.25  18.57  

            
BM2113 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 

127 2.11 4.40  4.67 14.44  1.27  4.58 7.81  
129 24.03 18.87 5.13 50.33 14.44 48.13 31.21  26.41 35.94 23.87 
133 1.46  1.28 0.33 1.11 5.78 1.27  22.71 23.44 9.36 
135         14.61   
143 35.06 33.65 91.03 27.33 34.44 39.74 40.13 88.75 17.43 3.13 60.70 
145 1.79 14.15   11.11  10.19 11.25 12.32 29.69  
149  0.31  12.67 1.11    1.94  6.07 
151       0.32     
153 35.55 28.62 2.56 4.67 23.33 6.34 15.61     

            
BM2830 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 

142   3.85        16.94 
146 10.91 6.62 1.28 7.43 12.24  4.13  27.40 14.71 4.26 
148 2.77 6.62  19.59 3.06 8.08 0.32 52.50 16.44 14.71 4.47 
150   21.79 1.35     5.82 14.71 6.55 
152 38.44 33.77 15.38 11.15 39.80 15.04 27.46 11.25 15.92 39.71 29.21 
156 0.16 7.95  1.35 1.02 0.94 15.40  1.54  1.14 
158 29.64 23.84 32.05 12.84 18.37 43.23 29.84 31.25 30.31  20.17 
160           0.10 
162 9.45 3.64  35.14 9.18  12.06  0.68 16.18 5.51 
164 8.63 17.55 25.64 11.15 16.33 32.71 10.79 5.00 1.88  11.64 
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BM4028 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 
108 1.97   0.34   0.63  19.07  12.60 
112    0.34        
114 62.30 68.24 57.69 21.77 37.76 91.60 41.77  16.30 4.29 13.22 
116 2.79 7.86 6.41 45.24 19.39 0.20 5.85 7.50 58.89 55.71 36.26 
118 30.00 23.90 35.90 32.31 42.86 8.20 51.74 20.00 5.74 40.00 37.91 
122 2.95           
126        72.50    

            
BM4107 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 

159          15.71  
165 19.07 60.18 29.49 37.42 61.22 10.07 25.47 68.75 29.55 48.57 51.13 
173  0.60  0.66 2.04     2.86  
175 45.67 13.77 30.77 16.56 9.18 27.99 47.03  17.53 7.14  
179  0.30 1.28 18.87 3.06  3.59 10.00 13.92 10.00 16.29 
181 13.46 12.57 6.41 18.54 10.20 34.89 12.34  12.54 2.86 9.22 
183 21.79 12.57 32.05 7.95 14.29 27.05 11.56 21.25 26.46 12.86 22.54 
185           0.82 

            
BM4311 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 

90 7.28 2.40 2.56  3.06 15.37 15.17 25.00 8.77 4.29 6.67 
92 5.96 2.69  38.26 1.02    18.07 4.29 7.49 
96 0.17 3.29 2.56 0.67 1.02    33.33 2.86 9.03 
98 36.42 19.76 41.03 45.64 30.61 34.81 29.26 33.75 7.89 14.29 37.78 

102 23.68 32.34 25.64 9.06 17.35 22.96 37.31  0.53  9.34 
104 26.49 39.52 28.21 6.38 46.94 26.85 18.27 41.25 31.40 74.29 29.67 

            
BM4440 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 

123 3.58 19.76 14.10 6.25 19.39 5.37 19.50  0.17  4.93 
125 28.50 20.96 12.82 19.08 12.24 6.11 34.50 100.00 35.32 5.71 54.11 
127 19.06 16.47 44.87 37.17 16.33 20.00 10.50  4.78 28.57 25.98 
129 36.48 35.63 6.41 13.16 36.73 39.26 17.50  56.14 38.57 13.66 
131 12.38 7.19 21.79 21.38 13.27 29.26 16.83  1.88 7.14 1.33 
133       1.17  0.17   
143    2.96 2.04    1.54 20.00  

            
BM47 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 
103 70.32 48.08 67.95 62.84 57.45 97.93 84.74 100.00 77.05 34.29 88.63 
105 29.68 42.31 32.05 34.80 32.98 2.07 14.49  12.84 65.71 10.76 
107  9.62   9.57  0.78  10.10  0.61 
111    2.36        

            
BM6017 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 

104 6.92 0.80  38.53 18.18  7.39  21.26 22.06 6.97 
114 2.44   12.39 2.60   21.31 9.98 22.06  
116 64.97 52.99 23.53 27.52 40.26 21.65 53.60 67.21 10.20 14.71 16.32 
118 24.66 46.22 70.59 11.93 36.36 78.35 39.02 11.48 58.57 38.24 68.82 
120   1.47 9.17 2.60     2.94 5.66 
122   4.41 0.46       2.24 

            
BM711 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 

161 5.52 2.99 61.54 36.00 13.27 12.92 9.94 38.75 24.73 27.14 63.48 
163  4.79  6.00      8.57  
165    18.00 6.12 0.94   15.41  8.02 
167 94.48 92.22 38.46 40.00 79.59 86.14 90.06 61.25 55.73 61.43 22.02 
175           6.48 
177     1.02    4.12 2.86  
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BM720 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 
203 8.93 10.61  3.62 13.83 5.66 5.87     
213  1.52 3.85 3.29     20.92  15.64 
223    2.63        
225 13.96 13.03 3.85 15.46 13.83  7.55 40.00 9.57 48.57 13.27 
227 2.27    2.13 0.19   20.57 10.00 0.21 
229 36.20 46.67 62.82 11.18 28.72 46.42 45.13  10.46 2.86 25.72 
231 37.99 27.88 28.21 54.61 41.49 47.74 41.44 3.75 24.82 38.57 33.44 
233 0.49 0.30  9.21    56.25 13.65  3.09 
235 0.16  1.28        8.64 

            
BM757 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 

186         1.04   
188         9.34  0.10 
190 0.16 0.92  2.03   2.86  3.98 5.71 0.62 
192         0.69  1.23 
194 77.94 71.78 100.00 68.24 77.17 91.53 87.46 77.50 34.95 32.86 58.62 
196 6.54 12.58   14.13 5.44 8.25  5.36 2.86 13.86 
198         3.11   
200 15.36 13.80  29.05 8.70 3.02 1.43 22.50 39.62 58.57 25.56 
202  0.92  0.68     1.90   

            
BMC4214 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 

175 1.13 3.01 2.56 26.57 2.27    9.39  17.98 
179 21.77 22.89 32.05 12.59 20.45 14.31 25.08  8.87 23.53 2.38 
181 22.42 20.48 42.31 10.14 26.14 21.76 23.06 100.00 24.06 23.53 12.40 
185 2.74 22.59 5.13 19.23 20.45 0.59 2.02  22.35 44.12 34.09 
187 51.94 31.02 17.95 31.47 30.68 63.33 49.83  35.32 5.88 33.16 
191          2.94  

            
BMS1001 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 

107         6.66  1.13 
109 3.53  3.85 19.41 3.06    7.34 17.14 34.91 
111 3.21   1.32   0.46  5.63 1.43 1.95 
113 16.35 10.18 16.67 26.97 12.24  8.95 100.00 9.39 10.00 24.33 
115 76.92 89.82 79.49 52.30 84.69 100.00 90.59  70.99 71.43 37.68 

            
BMS1074 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 

152    6.85 2.04       
154 14.79 12.05 14.47 20.89 13.27 8.18 23.61  10.07 22.06 13.45 
156 5.14 21.08 6.58 30.14 26.53  4.48 21.25 45.05 25.00 14.78 
158 56.59 60.24 56.58 33.56 53.06 60.78 52.31 32.50 14.85 29.41 12.53 
160 23.47 6.63 22.37 8.56 5.10 31.04 19.60 46.25 30.03 23.53 59.24 

            
BMS1117 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 

89 56.25 46.95 19.23 29.53 51.02 36.79 36.02 8.75 43.75 55.88 25.37 
91 34.29 27.13 20.51 19.80 22.45 44.72 39.44 91.25 45.66 32.35 21.35 
93 8.33 23.17 57.69 50.67 26.53 0.75 22.20  10.59 11.76 53.28 
99 1.12 2.74 2.56   17.74 2.33     
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BMS1172 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 
86    12.33        
88 2.24 6.93  28.33 12.24 8.17 16.46  38.49 11.76 3.33 
90 80.13 69.28 82.05 29.33 64.29 77.82 61.80 2.50 28.35 57.35 62.58 
92 16.35 16.87   13.27 3.31 17.08   5.88  

100  6.93 6.41 13.33 8.16 10.70 4.66 1.25 16.32 8.82 1.46 
102   1.28 10.67    35.00   22.97 
104 1.28  10.26 6.00 2.04   61.25 16.84 16.18 9.67 

            
BMS1315 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 

135 56.89 44.61 10.26 60.86 72.45 36.43 42.72 12.50 47.07 74.29 53.59 
137 2.40  2.56 14.14 6.12   87.50 8.97 5.71 15.98 
141 2.72 0.60 20.51 9.21 1.02    21.38 12.86 20.18 
147 37.66 45.81 66.67 13.49 18.37 63.57 49.23  22.59 7.14 10.25 
149 0.32 8.98  2.30 2.04  8.05     

            
BMS1355 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 

146 36.06 24.25 48.72 39.47 52.04 79.96 15.78 83.75 39.25 54.41 78.79 
148 7.37 10.18 46.15 10.86 7.14 4.31 28.44  19.28 7.35 13.52 
150 56.57 65.57 5.13 45.39 40.82 15.73 55.78 16.25 29.01 35.29 7.68 
154    4.28     12.46 2.94  

            
BMS1675 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 

85 12.54 12.95 7.89 18.42 21.43 6.85 18.52  24.57 8.57  
87 66.08 50.30 86.84 76.64 34.69 37.59 52.93 1.25 58.70 62.86 72.23 
89 7.40 26.20  1.32 31.63 17.96 4.94 80.00 9.73 7.14 10.96 
91 13.99 10.54 5.26 3.62 12.24 37.59 23.61 18.75 7.00 21.43 16.80 

            
BMS1716 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 

185         0.85   
189 22.03 14.46 3.85 35.81 26.53 8.55 4.78  16.55 5.88 14.27 
191 30.55 48.19 64.10 17.91 39.80 16.91 18.98 100.00 44.03 36.76 75.15 
193 10.93 13.55 7.69 1.35 15.31 20.45 12.96   5.88 0.62 
195 36.50 23.80 24.36 41.22 18.37 54.09 63.27  38.57 51.47 9.96 
197    3.72        

            
BMS1747 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 

89 3.59    1.04     11.43  
95 48.53 41.82 41.03 36.75 31.25 73.75 60.78 67.50 59.90 44.29 27.66 
99  7.27 21.79 59.60 17.71  6.41 26.25 12.12 42.86 33.40 

101 47.88 50.91 16.67 3.64 50.00 26.25 32.81  27.99 1.43 31.15 
103   20.51     6.25   7.79 

            
BMS1857 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 

142 8.65 1.20 2.56 6.38 1.04 4.66 25.39  8.42 4.29 11.89 
146        71.25    
148 10.42 30.12 42.31 7.72 25.00 34.89 2.51  24.05 51.43  
150   23.08    2.51  5.15  16.19 
156 17.79 11.75 3.85 13.42 17.71 29.29 10.34  21.31 25.71 12.40 
158 33.01 34.94 20.51 24.50 38.54 1.31 15.52  18.56 10.00 27.36 
160 19.39 18.07 7.69 18.46 15.63 24.44 31.35  22.51 8.57 24.49 
162 10.74 3.92   2.08 5.41 12.38     
164    22.82        
168    6.71    28.75   7.68 

            
            
            



185 

 

BMS1862 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 
142 50.00 57.20 50.00 17.89 41.94 86.51 61.11  40.26 5.88 31.83 
144     4.84     10.29  
156    26.42 1.61     11.76 1.05 
158 9.24 6.40 9.46 1.63 17.74  6.79  27.02 7.35 16.81 
160 3.30 3.20  1.63 11.29 0.99 4.63 73.75 21.69 25.00  
162 16.34 2.00  5.69 6.45 11.51 12.19  2.21 25.00 8.19 
164 16.67 20.80 1.35 22.36 11.29 0.79 8.49 11.25 1.29 2.94 5.67 
166   4.05 0.81 1.61    3.31 10.29 22.16 
167 2.31           
168 2.15 9.20 35.14 23.58 3.23 0.20 6.79  4.23  9.56 
170  1.20      15.00  1.47 4.73 

            
BMS2258 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 

127 6.73 5.39 20.51 38.82 10.20   46.25 11.26  17.21 
134          11.76  
136 2.72           
138 21.96 27.54 28.21 1.97 33.67 30.97 31.46 11.25  36.76  
140 14.10 34.73 8.97 23.03 35.71 13.62 13.86 18.75 26.62 4.41 39.04 
142 4.81 1.50 2.56 1.64 1.02 1.12 14.95    19.88 
144         2.39   
146 38.94 14.07 17.95 2.30 5.10 44.78 31.00  17.41 1.47  
148 10.74 16.77 20.51 7.89 4.08 9.51 8.72 23.75 20.65 30.88 13.73 
150   1.28 24.34 10.20    21.50 14.71 10.14 
152         0.17   

            
BMS2639 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 

168 41.51 26.06 16.67 7.05 26.53 47.81 34.63 47.50 24.22 24.24 16.63 
170 8.97 16.06 15.38 27.18 15.31 2.99 13.66  29.79 30.30 38.95 
172 6.09 13.94 52.56 11.74 21.43  2.33 5.00 36.59 10.61 40.84 
174 19.23 19.70  43.96 14.29 2.99 4.50     
176 8.81 16.06 8.97 8.39 13.27 1.79 27.02 6.25 0.17 28.79  
178 14.74 8.18 6.41  9.18 44.42 17.86  9.23   
186 0.64   1.68    41.25  6.06 3.58 

            
BMS410 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 

83 16.67 43.11 67.95 60.67 54.08 54.94 17.49 13.75 59.59 42.65 44.66 
85    5.33 3.06    13.18 16.18  
89 80.23 49.70 16.67 26.00 27.55 44.68 72.14 52.50 27.23 29.41 22.38 
93 3.10 7.19   13.27 0.38 10.37     
95    8.00 2.04   33.75  11.76 0.21 
97   15.38        32.75 

            
BMS510 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 

91 53.76 33.94 25.64 35.71 42.39 54.63 35.91 26.25 61.38 77.94 41.17 
92 12.42 14.85 42.31 32.31 22.83 16.99 21.21 73.75 20.00 16.18 29.67 
94 13.24 19.39 5.13 6.46 16.30  3.41  8.28 5.88 7.39 
95 20.59 31.82 26.92 25.51 18.48 28.38 39.47  10.34  21.77 

            
            
            
            
            
            
            
            
            



186 

 

BMS527 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 
159    5.48 1.04       
163 1.16 10.67 2.56 13.01 15.63  0.46  1.38  4.73 
165 2.98   7.19       1.75 
167 11.09 29.57 20.51 0.68 25.00 28.07 11.30 41.25 2.07 7.35 4.42 
171    2.05        
173 26.49 26.52 29.49 50.00 22.92 42.94 48.45 5.00 23.62 33.82 23.77 
175 50.83 27.74 44.87 20.21 26.04 25.65 31.11 50.00 17.59 41.18 47.63 
177 7.45 5.49 2.56 1.37 9.38 3.35 8.67 3.75 55.34 17.65 17.70 

            
BMS528 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 

140 48.69 13.19 41.03 50.99 19.77 38.13 31.19  40.92 30.00 23.77 
146 22.71 55.83 8.97 29.14 37.21 23.74 12.38 17.50 34.76 31.43 20.78 
148 3.27 9.51 6.41  11.63  6.90 2.50  5.71 37.04 
150 24.84 21.47 16.67 9.27 29.07 38.13 49.53 80.00 22.77 32.86 10.08 
152 0.49  26.92 10.60 2.33    1.54  8.33 

            
BMS601 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 

172 10.74 15.57 34.62 18.75 9.18 16.42 9.65 83.75 34.47 61.76 22.78 
174 14.10 17.66 8.97 37.83 27.55 16.42 15.82 6.25 24.06 5.88 33.40 
176 2.72 0.30 1.28    0.16  24.23  13.61 
178   1.28 14.47 2.04    16.21 23.53 23.61 
180 72.44 66.47 53.85 28.95 61.22 67.16 74.37 10.00 1.02 8.82 6.60 

            
BMS812 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 

90 13.89 24.53 8.97 13.31 18.37 22.92 11.36 100.00 1.71 24.24 10.60 
96         8.73   

106 52.45 43.08 84.62 23.38 53.06 35.42 41.48  50.00 28.79 47.84 
108 3.59 2.52 1.28 16.19 5.10  3.31  21.75 42.42 31.07 
110 3.43   10.79 1.02    14.04 4.55 4.94 
112 20.59 25.47 5.13 36.33 18.37 23.48 38.33  3.77  5.56 
122 6.05 4.40   4.08 18.18 5.52     

            
BMS911 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 

100 4.36 11.55  39.82 20.51 6.21 3.62  1.49 47.06 17.72 
102    14.03     4.69  3.41 
104 58.02 47.41 67.65 31.67 42.31 27.92 43.62 100.00 65.67 36.76 69.03 
106 9.70  10.29      21.96  9.84 
112 27.92 40.64 22.06 14.48 37.18 65.87 52.76  6.18 16.18  
114  0.40          

            
BMS941 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 

81 3.25 7.06 3.85 2.00 14.58  6.43 87.50 50.69 50.00 39.14 
83 96.75 92.94 96.15 44.33 78.13 100.00 93.57 12.50 33.45 50.00 60.04 
85    53.67 7.29    15.86  0.82 

            
HUJ246 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 

242        52.50    
252        8.75    
256 15.76 30.42 1.32 13.42 15.31 6.69 11.88  12.50 10.29  
258 12.86 27.11 51.32 1.68 22.45 11.34 33.64    27.10 
260 17.52 11.14 3.95 15.44 3.06 26.21 6.94  6.51 25.00 6.26 
262 47.43 28.61 43.42 62.75 55.10 37.55 43.52 11.25 73.63 64.71 60.99 
264 6.43 2.71  6.71 4.08 18.22 4.01 27.50 7.36  5.65 
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IL4 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 
83 0.50 2.41 2.56 1.67  1.69 8.52    4.38 
85 18.50 3.92 11.54 0.67 7.29 4.68 5.05  4.04   
89  5.12 6.41 26.00 6.25    12.28  34.69 
91 40.50 32.23 20.51 35.67 31.25 49.06 30.60  8.60 4.41 0.21 
93 1.50   6.00 11.46   3.75 20.70 45.59 2.71 
95 3.67 5.12   7.29 16.48 3.15   13.24  
97 24.50 30.72 25.64 6.33 13.54 26.97 43.69  27.19 5.88 14.69 
99  0.30 2.56 0.33       8.44 

103 10.83 20.18 21.79 14.67 20.83 1.12 8.99 96.25 27.19 27.94 29.79 
105   8.97 8.67 2.08     2.94 5.10 

            
ILSTS102 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 

113 6.41 2.99   4.08 0.19 25.16 15.00  17.14  
133 9.78 0.90  2.96 3.06 16.92 8.91  4.47   
143 44.39 48.20 34.62 69.08 43.88 34.02 26.41 85.00 51.55 34.29 47.44 
145 26.28 32.34 48.72 24.34 44.90 23.12 25.63  30.41 47.14 25.61 
147 13.14 15.57 16.67 3.62 4.08 25.75 13.91  11.86 1.43 26.95 
153         1.72   

            
INRA037 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 

118 0.32 4.49   6.12    11.64 16.18  
120 3.21   13.82      2.94 8.71 
122 68.75 65.57 47.44 16.45 47.96 29.00 30.47 70.00 17.29 39.71 44.06 
124 3.53 17.96 44.87 63.82 28.57 41.64 26.25 26.25 57.36 10.29 42.83 
126 2.24 6.89   16.33  25.31 3.75 13.70 30.88  
132 21.96 5.09 7.69 5.92 1.02 29.37 17.97    4.41 

            
INRA133 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 

223        5.00   1.45 
227  7.78 19.23 60.74 28.05 4.37 1.71  31.82 20.00 11.80 
234    1.68      24.29  
236 26.17 17.66 6.41 14.09 13.41 18.25 16.93  8.50  11.80 
238 0.34 0.30  0.67   0.93 15.00 2.96 22.86 0.52 
240 73.49 74.25 74.36 22.82 58.54 77.38 80.43 80.00 56.72 32.86 74.43 

            
INRA189 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 

96 100.00 52.00 100.00 92.21 61.11 100.00 100.00 100.00 100.00  100.00 
100  48.00  7.79 38.89       

            
INRA194 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 

144   2.56 1.97     4.79  11.27 
154 51.95 37.12 57.69 42.11 24.49 36.75 63.77 67.50 66.78 70.00 46.11 
156 43.32 60.74 35.90 54.61 65.31 62.69 25.95 30.00 24.14 5.71 33.81 
158 4.72 2.15 3.85 0.99 5.10 0.56 10.28  4.28 5.71 7.38 
160    0.33 5.10   2.50  18.57 1.43 

            
RM372 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 

114    0.33     1.91  1.54 
118 9.71 28.44 3.85 7.33 36.17 33.02 15.37  29.86  12.53 
128 1.46   6.67    6.25 12.67 11.76  
130 5.66 12.81 25.64 53.67 42.55 3.24 13.82 17.50 25.52 70.59 28.44 
132 25.73 8.75 5.13  1.06 27.67 25.00  2.95 1.47 18.38 
134 30.26 28.13 51.28 32.00 10.64 19.47 30.59 76.25 12.85 11.76 37.47 
136 27.18 21.88 14.10  9.57 16.60 15.22  9.03 4.41 1.64 
138         5.21   
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TGLA122 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 
136   1.28        4.34 
140   2.56     41.25 1.77  20.87 
142 50.33 32.93 44.87 37.00 41.84 64.31 61.61 38.75 22.44 84.29 18.80 
144 0.50          0.10 
148 19.70 33.23 43.59 53.67 32.65 11.34 15.79 20.00 50.35 14.29 30.37 
150 29.47 33.83 7.69 9.33 25.51 24.35 22.60  25.44 1.43 25.52 

            
TGLA44 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 

149   16.67        9.79 
151   3.85 9.00     6.87  2.99 
153  0.90 5.13 28.33 9.18 1.86 2.52 1.25 37.11  33.30 
155 27.54 53.61 23.08 45.33 48.98 29.74 25.87 98.75 43.30 88.24 43.30 
157 30.33 10.24 2.56 6.00 13.27 28.62 14.67  9.97 11.76 3.51 
159 42.13 35.24 48.72 11.33 28.57 39.78 56.94  2.75  7.11 

            
TGLA53 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 

132 1.14   4.05        
134 37.30 17.72 66.67 37.84 12.24 35.28 41.40 16.25 36.70 37.50 43.42 
136 17.75 37.03 8.97 30.07 50.00 19.15 28.90 55.00 52.13 29.69 54.22 
138 0.98   17.91 6.12   28.75  21.88  
140 42.83 45.25 24.36 6.76 30.61 45.56 29.71  11.17 10.94 2.37 
142    3.38 1.02       

            
URB011 BNP FN GT NBR NS TRN TRS TSBH WC WM YNP 

139          11.76  
143 7.21 1.50  35.00 4.17 0.79 4.39    2.38 
145   1.28 0.71   1.57  16.72  7.14 
147 56.73 30.24 19.23 3.57 15.63 47.05 43.26 23.75 30.31 52.94 18.32 
149 17.63 39.52 44.87 45.00 43.75 38.39 20.22 76.25 26.31 30.88 37.16 
151 0.80 15.27 1.28 11.07 22.92  6.74  15.16  14.70 
153 17.63 13.47 33.33 4.64 13.54 13.78 23.82    20.29 
155         11.50 4.41  
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APPENDIX C 

AVERAGE STATISTICS FOR 54 POLYMORPHIC LOCI ACROSS 11 BISON POPULATIONS 

 

Average number of alleles (NA), allelic richness (AR), observed heterozygosity (HO), and expected heterozygosity (HE) are 

shown.  Averages and standard deviations (Std Dev) given for each population.  NA and AR calculated across all            

samples (ALL).  See Table 1 for population abbreviations. 

NA BNP FN GT NBR NS TRN TRS TSBH WC WM YNP ALL 

AGLA232 5 5 4 4 5 4 5 2 5 4 6 7 

BL1036 4 4 4 5 5 3 4 2 5 3 4 5 

BM1225 5 6 4 8 6 4 6 3 7 4 5 10 

BM1706 3 3 3 3 3 2 4 3 5 4 5 6 

BM17132 4 4 5 3 4 4 4 3 3 4 5 5 

BM1824 4 5 5 6 7 4 5 2 5 4 6 7 

BM1862 6 6 3 5 6 5 5 3 5 6 5 6 

BM188 4 3 4 4 5 2 4 4 6 6 7 9 

BM1905 2 2 3 4 3 2 4 3 2 3 3 4 

BM2113 6 6 4 6 7 4 7 2 7 5 4 9 

BM2830 7 7 6 8 7 5 7 4 8 5 10 10 

BM4028 5 3 3 5 3 3 4 3 4 3 4 7 

BM4107 4 6 5 6 6 4 5 3 5 7 5 8 

BM4311 6 6 5 5 6 4 4 3 6 5 6 6 

BM4440 5 5 5 6 6 5 6 1 7 5 5 7 

BM47 2 3 2 3 3 2 3 1 3 2 3 4 

BM6017 4 3 4 6 5 2 3 3 4 5 5 6 

BM711 2 3 2 4 4 3 2 2 4 4 4 6 
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NA BNP FN GT NBR NS TRN TRS TSBH WC WM YNP ALL 

BM720 7 6 5 7 5 4 4 3 6 4 7 9 

BM757 4 5 1 4 3 3 4 2 9 4 6 9 

BMC4214 5 5 5 5 5 4 4 1 5 5 5 6 

BMS1001 4 2 3 4 3 1 3 1 5 4 5 5 

BMS1074 4 4 4 5 5 3 4 3 4 4 4 5 

BMS1117 4 4 4 3 3 4 4 2 3 3 3 4 

BMS1172 4 4 4 6 5 4 4 4 4 5 5 7 

BMS1315 5 4 4 5 5 2 3 2 4 4 4 5 

BMS1355 3 3 3 4 3 3 3 2 4 4 3 4 

BMS1675 4 4 3 4 4 4 4 3 4 4 3 4 

BMS1716 4 4 4 5 4 4 4 1 4 4 4 6 

BMS1747 3 3 4 3 4 2 3 3 3 4 4 5 

BMS1857 6 6 6 7 6 6 7 2 6 5 6 10 

BMS1862 7 7 5 8 9 5 6 3 7 9 8 11 

BMS2258 7 6 7 7 7 5 5 4 7 6 5 11 

BMS2639 7 6 5 6 6 5 6 4 5 5 4 7 

BMS410 3 3 3 4 5 3 3 3 3 4 4 6 

BMS510 4 4 4 4 4 3 4 2 4 3 4 4 

BMS527 6 5 5 8 6 4 5 4 5 4 6 8 

BMS528 5 4 5 4 5 3 4 3 4 4 5 5 

BMS601 4 4 5 4 4 3 4 3 5 4 5 5 

BMS812 6 5 4 5 6 4 5 1 6 4 5 7 

BMS911 4 4 3 4 3 3 3 1 5 3 4 6 

BMS941 2 2 2 3 3 1 2 2 3 2 3 3 

HUJ246 5 5 4 5 5 5 5 4 4 3 4 7 

IL4 7 8 8 9 8 6 6 2 6 6 8 10 

ILSTS102 5 5 3 4 5 5 5 2 5 4 3 6 

INRA037 6 5 3 4 5 3 4 3 4 5 4 6 

INRA133 3 4 3 5 3 3 4 3 4 4 5 6 

INRA189 1 2 1 2 2 1 1 1 1 - 1 2 

INRA194 3 3 4 5 4 3 3 3 4 4 5 5 
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NA BNP FN GT NBR NS TRN TRS TSBH WC WM YNP ALL 

RM372 6 5 5 5 5 5 5 3 8 5 6 8 

TGLA122 4 3 5 3 3 3 3 3 4 3 6 6 

TGLA44 3 4 6 5 4 4 4 2 5 2 6 6 

TGLA53 5 3 3 6 5 3 3 3 3 4 3 6 

URB011 5 5 5 6 5 4 6 2 5 4 6 8 

NA Average 4.50 4.37 4.06 4.98 4.78 3.52 4.24 2.54 4.80 4.25 4.83 6.48 
NA Std Dev 1.48 1.39 1.34 1.54 1.46 1.19 1.27 0.91 1.55 1.22 1.51 2.03 

             
AR BNP FN GT NBR NS TRN TRS TSBH WC WM YNP ALL 

AGLA232 4.96 4.95 3.80 3.60 4.97 4.00 4.92 2.00 5.00 3.89 4.93 5.31 
BL1036 3.53 4.00 4.00 4.94 4.99 3.00 3.87 2.00 5.00 3.00 3.86 4.98 
BM1225 4.53 4.98 4.00 7.33 5.55 4.00 5.76 3.00 6.95 4.00 4.41 7.09 

BM1706 2.97 3.00 3.00 2.97 3.00 2.00 3.34 3.00 4.17 3.77 4.13 4.24 

BM17132 3.91 4.00 4.99 3.00 4.00 3.99 4.00 2.94 3.00 3.89 4.82 4.86 

BM1824 4.00 4.89 4.96 5.98 6.59 3.39 4.84 2.00 4.63 3.99 5.92 6.32 

BM1862 5.89 5.46 3.00 4.56 5.60 4.74 5.00 3.00 4.98 6.00 4.50 5.83 

BM188 3.96 2.34 3.99 3.94 4.13 1.88 3.10 4.00 5.27 5.66 6.14 5.66 

BM1905 2.00 2.00 2.80 3.85 3.00 2.00 3.55 3.00 2.00 3.00 2.99 3.76 

BM2113 5.06 5.15 3.75 5.13 6.38 3.97 5.32 2.00 6.68 5.00 3.98 7.25 

BM2830 5.94 6.90 5.79 7.22 6.59 4.46 6.12 4.00 6.69 5.00 8.43 8.67 

BM4028 4.43 3.00 3.00 3.42 3.00 2.12 3.32 3.00 3.98 3.00 4.00 4.81 

BM4107 4.00 4.52 4.80 5.37 5.82 4.00 4.91 3.00 5.00 6.98 4.41 5.36 

BM4311 5.08 5.56 4.92 4.36 5.22 4.00 4.00 3.00 5.29 4.99 5.98 5.98 

BM4440 4.91 4.99 5.00 5.86 5.87 4.96 5.54 1.00 4.52 5.00 4.54 5.50 

BM47 2.00 3.00 2.00 2.81 3.00 1.75 2.40 1.00 3.00 2.00 2.33 2.90 

BM6017 3.68 2.25 2.93 5.30 4.86 2.00 2.95 3.00 3.99 4.86 4.53 4.53 

BM711 1.98 2.84 2.00 3.99 3.63 2.46 2.00 2.00 3.94 3.99 3.98 4.34 

BM720 5.15 4.84 4.78 6.67 4.89 3.10 3.98 2.99 6.00 3.99 5.99 7.57 

BM757 3.09 3.94 1.00 3.14 3.00 2.85 3.45 2.00 7.35 3.99 3.94 4.89 

BMC4214 4.36 4.88 4.96 5.00 4.92 3.32 3.74 1.00 5.00 4.99 4.79 5.02 

BMS1001 3.79 2.00 2.99 3.60 2.95 1.00 2.26 1.00 4.96 3.89 4.23 4.20 
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AR BNP FN GT NBR NS TRN TRS TSBH WC WM YNP ALL 

BMS1074 3.97 3.99 4.00 4.99 4.86 3.00 3.95 3.00 4.00 4.00 4.00 4.27 

BMS1117 3.52 3.85 3.96 3.00 3.00 3.39 3.79 2.00 3.00 3.00 3.00 3.85 

BMS1172 3.34 3.99 3.80 5.99 4.87 3.89 3.96 3.73 4.00 5.00 4.49 6.37 

BMS1315 3.82 3.34 3.96 4.80 4.50 2.00 3.00 2.00 4.00 4.00 4.00 4.74 

BMS1355 2.99 3.00 3.00 3.95 3.00 2.95 3.00 2.00 4.00 3.99 2.99 3.72 

BMS1675 3.99 4.00 3.00 3.52 4.00 3.99 3.96 2.78 3.99 4.00 3.00 4.00 

BMS1716 4.00 4.00 3.99 4.54 4.00 4.00 3.96 1.00 3.43 4.00 3.33 4.21 

BMS1747 2.91 2.99 4.00 2.92 3.65 2.00 2.99 3.00 3.00 3.89 3.99 4.12 

BMS1857 6.00 5.50 5.95 6.98 5.52 5.51 6.62 2.00 5.97 5.00 5.99 8.92 

BMS1862 6.43 6.23 4.83 6.81 9.00 3.02 5.93 3.00 6.18 8.91 7.42 8.63 

BMS2258 6.78 5.62 6.76 6.23 6.61 4.52 5.00 4.00 5.90 5.91 5.00 7.51 

BMS2639 6.32 6.00 5.00 5.68 6.00 4.43 5.74 4.00 4.11 5.00 3.90 6.69 

BMS410 2.87 2.99 3.00 3.98 4.82 2.22 3.00 3.00 3.00 4.00 3.12 5.23 

BMS510 4.00 4.00 4.00 3.99 4.00 3.00 3.90 2.00 4.00 3.00 3.99 3.99 

BMS527 5.39 4.98 4.92 6.74 5.65 3.89 4.26 3.99 4.34 4.00 5.58 5.76 

BMS528 4.16 4.00 5.00 4.00 4.92 3.00 3.99 2.95 3.64 4.00 5.00 4.89 

BMS601 3.84 3.19 4.59 4.00 3.87 3.00 3.10 3.00 4.49 4.00 4.99 4.99 

BMS812 5.79 4.78 3.79 5.00 5.61 4.00 4.86 1.00 5.59 4.00 4.94 6.41 

BMS911 3.87 3.23 3.00 4.00 3.00 2.95 2.81 1.00 4.30 3.00 3.81 4.57 

BMS941 1.88 1.99 1.99 2.75 3.00 1.00 1.99 2.00 3.00 2.00 2.41 2.98 

HUJ246 4.99 4.85 3.81 4.68 4.94 4.99 4.92 4.00 3.98 3.00 3.96 5.54 

IL4 5.82 6.88 7.92 7.24 7.88 5.16 5.84 1.99 5.93 5.99 6.86 9.12 

ILSTS102 4.99 4.34 3.00 3.80 4.92 4.12 5.00 2.00 4.63 3.89 3.00 5.08 

INRA037 4.75 4.92 3.00 3.99 4.63 3.00 4.00 2.99 4.00 4.99 3.94 5.65 

INRA133 2.20 3.18 3.00 4.07 3.00 2.95 3.13 3.00 3.86 4.00 3.89 4.11 

INRA189 1.00 2.00 1.00 1.82 2.00 1.00 1.00 1.00 1.00 - 1.00 1.61 

INRA194 2.96 2.78 3.95 3.45 3.99 2.31 3.00 2.95 3.90 4.00 4.60 4.24 

RM372 5.59 5.00 4.99 4.19 4.66 4.89 5.00 3.00 7.55 4.91 5.28 6.50 

TGLA122 3.28 3.00 4.76 3.00 3.00 3.00 3.00 3.00 3.69 2.89 5.01 4.50 

TGLA44 3.00 3.46 5.95 4.99 4.00 3.71 3.81 1.78 4.83 2.00 5.75 5.56 

TGLA53 4.00 3.00 3.00 5.85 4.63 3.00 3.00 3.00 3.00 4.00 2.78 4.18 
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AR BNP FN GT NBR NS TRN TRS TSBH WC WM YNP ALL 

URB011 4.40 4.64 4.59 5.28 4.99 3.41 5.58 2.00 5.00 4.00 5.78 6.64 

AR Average 4.11 4.06 3.96 4.60 4.60 3.26 3.99 2.52 4.49 4.21 4.44 5.33 
AR Std Dev 1.28 1.24 1.31 1.34 1.37 1.09 1.19 0.90 1.30 1.21 1.31 1.54 

             
HO BNP FN GT NBR NS TRN TRS TSBH WC WM YNP  

AGLA232 0.587 0.497 0.564 0.517 0.561 0.484 0.602 0.350 0.712 0.686 0.636  
BL1036 0.567 0.639 0.692 0.713 0.796 0.575 0.586 0.450 0.759 0.629 0.600  
BM1225 0.724 0.582 0.632 0.788 0.553 0.688 0.706 0.675 0.823 0.400 0.694  

BM1706 0.425 0.528 0.385 0.477 0.500 0.319 0.267 0.400 0.587 0.286 0.409  

BM17132 0.505 0.611 0.692 0.644 0.729 0.628 0.693 0.125 0.696 0.486 0.706  

BM1824 0.647 0.655 0.667 0.776 0.708 0.594 0.582 0.350 0.688 0.559 0.757  

BM1862 0.698 0.721 0.447 0.517 0.583 0.758 0.802 0.425 0.728 0.706 0.708  

BM188 0.369 0.265 0.462 0.700 0.388 0.056 0.062 0.850 0.706 0.486 0.828  

BM1905 0.469 0.257 0.513 0.596 0.500 0.507 0.422 0.675 0.283 0.714 0.357  

BM2113 0.688 0.717 0.179 0.673 0.778 0.586 0.678 0.225 0.746 0.531 0.558  

BM2830 0.775 0.795 0.821 0.811 0.755 0.703 0.756 0.625 0.764 0.706 0.813  

BM4028 0.475 0.440 0.513 0.714 0.714 0.152 0.582 0.200 0.600 0.543 0.669  

BM4107 0.708 0.581 0.718 0.781 0.449 0.713 0.691 0.475 0.780 0.771 0.633  

BM4311 0.689 0.617 0.590 0.691 0.531 0.748 0.672 0.725 0.747 0.429 0.731  

BM4440 0.707 0.784 0.667 0.763 0.776 0.730 0.790 0.000 0.556 0.714 0.606  

BM47 0.439 0.577 0.385 0.453 0.596 0.041 0.249 0.000 0.373 0.571 0.197  

BM6017 0.553 0.452 0.517 0.750 0.621 0.335 0.515 0.476 0.580 0.824 0.513  

BM711 0.104 0.150 0.564 0.680 0.224 0.247 0.180 0.375 0.620 0.686 0.541  

BM720 0.679 0.721 0.487 0.697 0.702 0.532 0.644 0.425 0.798 0.571 0.788  

BM757 0.363 0.436 0.000 0.399 0.326 0.153 0.232 0.400 0.754 0.371 0.567  

BMC4214 0.661 0.801 0.615 0.776 0.727 0.573 0.670 0.000 0.758 0.647 0.711  

BMS1001 0.394 0.144 0.333 0.625 0.265 0.000 0.170 0.000 0.509 0.343 0.639  

BMS1074 0.624 0.536 0.553 0.781 0.531 0.518 0.623 0.750 0.717 0.853 0.571  

BMS1117 0.535 0.701 0.513 0.550 0.673 0.642 0.677 0.175 0.590 0.441 0.615  

BMS1172 0.308 0.482 0.308 0.767 0.612 0.335 0.565 0.475 0.739 0.500 0.559  

BMS1315 0.538 0.611 0.590 0.513 0.449 0.483 0.542 0.200 0.648 0.457 0.637  
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HO BNP FN GT NBR NS TRN TRS TSBH WC WM YNP  

BMS1355 0.545 0.485 0.615 0.618 0.633 0.356 0.550 0.325 0.672 0.559 0.316  

BMS1675 0.502 0.620 0.211 0.388 0.735 0.715 0.623 0.275 0.611 0.657 0.418  

BMS1716 0.714 0.657 0.487 0.682 0.776 0.636 0.503 0.000 0.618 0.618 0.394  

BMS1747 0.542 0.485 0.821 0.517 0.521 0.402 0.538 0.500 0.577 0.629 0.732  

BMS1857 0.792 0.729 0.718 0.832 0.708 0.762 0.755 0.375 0.842 0.714 0.783  

BMS1862 0.667 0.336 0.514 0.618 0.548 0.206 0.583 0.425 0.739 0.765 0.756  

BMS2258 0.740 0.790 0.692 0.783 0.857 0.690 0.763 0.725 0.788 0.794 0.734  

BMS2639 0.760 0.788 0.667 0.691 0.939 0.614 0.767 0.725 0.679 0.545 0.619  

BMS410 0.304 0.605 0.564 0.560 0.673 0.551 0.440 0.675 0.521 0.647 0.626  

BMS510 0.657 0.764 0.641 0.701 0.696 0.606 0.641 0.325 0.607 0.382 0.674  

BMS527 0.619 0.695 0.692 0.678 0.708 0.677 0.663 0.650 0.603 0.588 0.687  

BMS528 0.614 0.650 0.667 0.669 0.744 0.728 0.705 0.300 0.644 0.800 0.730  

BMS601 0.147 0.222 0.154 0.428 0.184 0.172 0.117 0.150 0.720 0.588 0.658  

BMS812 0.601 0.648 0.231 0.755 0.673 0.765 0.688 0.000 0.654 0.576 0.547  

BMS911 0.596 0.560 0.448 0.696 0.517 0.474 0.567 0.000 0.489 0.529 0.471  

BMS941 0.065 0.129 0.077 0.480 0.313 0.000 0.129 0.250 0.590 0.429 0.453  

HUJ246 0.730 0.735 0.632 0.577 0.571 0.773 0.707 0.650 0.445 0.500 0.585  

IL4 0.690 0.771 0.821 0.800 0.729 0.685 0.691 0.075 0.814 0.765 0.708  

ILSTS102 0.740 0.695 0.667 0.487 0.612 0.774 0.772 0.300 0.653 0.629 0.602  

INRA037 0.474 0.515 0.564 0.605 0.633 0.658 0.759 0.350 0.582 0.647 0.592  

INRA133 0.315 0.329 0.462 0.490 0.390 0.365 0.258 0.100 0.514 0.629 0.395  

INRA189 - - - - - - - - - - -  

INRA194 0.570 0.509 0.436 0.526 0.571 0.459 0.509 0.450 0.476 0.486 0.658  

RM372 0.731 0.750 0.564 0.553 0.660 0.779 0.783 0.400 0.840 0.471 0.708  

TGLA122 0.641 0.689 0.564 0.553 0.653 0.550 0.529 0.800 0.664 0.314 0.789  

TGLA44 0.646 0.596 0.590 0.680 0.673 0.632 0.571 0.025 0.677 0.235 0.664  

TGLA53 0.671 0.741 0.538 0.716 0.633 0.641 0.659 0.550 0.603 0.813 0.475  

URB011 0.631 0.731 0.692 0.636 0.667 0.630 0.680 0.425 0.794 0.529 0.760  

HO Average 0.565 0.576 0.531 0.639 0.605 0.517 0.564 0.371 0.654 0.580 0.615  
HO Std Dev 0.17 0.18 0.18 0.12 0.16 0.22 0.20 0.24 0.12 0.15 0.14  
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HE BNP FN GT NBR NS TRN TRS TSBH WC WM YNP  
AGLA232 0.584 0.502 0.628 0.518 0.545 0.479 0.581 0.476 0.702 0.624 0.631  

BL1036 0.556 0.652 0.693 0.732 0.737 0.596 0.604 0.496 0.786 0.569 0.623  
BM1225 0.707 0.583 0.717 0.767 0.533 0.683 0.678 0.622 0.805 0.428 0.691  

BM1706 0.375 0.495 0.397 0.475 0.448 0.293 0.285 0.378 0.608 0.297 0.394  

BM17132 0.534 0.644 0.705 0.621 0.713 0.616 0.673 0.121 0.646 0.441 0.719  

BM1824 0.656 0.696 0.748 0.780 0.677 0.555 0.579 0.404 0.647 0.662 0.750  

BM1862 0.702 0.666 0.571 0.572 0.725 0.738 0.786 0.377 0.729 0.747 0.695  

BM188 0.411 0.283 0.566 0.688 0.414 0.061 0.157 0.698 0.717 0.629 0.761  

BM1905 0.458 0.276 0.489 0.555 0.497 0.496 0.488 0.551 0.305 0.637 0.352  

BM2113 0.693 0.750 0.170 0.654 0.781 0.604 0.708 0.202 0.811 0.735 0.563  

BM2830 0.736 0.784 0.768 0.794 0.765 0.678 0.785 0.619 0.778 0.763 0.821  

BM4028 0.521 0.473 0.541 0.645 0.642 0.155 0.555 0.437 0.588 0.535 0.692  

BM4107 0.690 0.589 0.721 0.759 0.592 0.718 0.685 0.478 0.778 0.716 0.653  

BM4311 0.734 0.700 0.695 0.635 0.663 0.732 0.720 0.661 0.745 0.429 0.743  

BM4440 0.734 0.760 0.721 0.760 0.776 0.715 0.774 0.000 0.558 0.732 0.619  

BM47 0.418 0.583 0.442 0.485 0.558 0.041 0.261 0.000 0.380 0.455 0.203  

BM6017 0.541 0.505 0.454 0.747 0.693 0.313 0.547 0.485 0.605 0.744 0.496  

BM711 0.104 0.147 0.478 0.677 0.350 0.242 0.179 0.482 0.604 0.547 0.539  

BM720 0.698 0.678 0.530 0.656 0.714 0.555 0.616 0.530 0.815 0.614 0.772  

BM757 0.365 0.451 0.000 0.451 0.382 0.159 0.228 0.353 0.707 0.555 0.572  

BMC4214 0.633 0.760 0.693 0.770 0.762 0.532 0.636 0.000 0.752 0.701 0.726  

BMS1001 0.380 0.184 0.343 0.618 0.270 0.000 0.172 0.000 0.475 0.458 0.677  

BMS1074 0.601 0.576 0.613 0.743 0.635 0.529 0.631 0.642 0.676 0.757 0.594  

BMS1117 0.560 0.653 0.596 0.619 0.625 0.634 0.666 0.162 0.590 0.580 0.607  

BMS1172 0.331 0.483 0.316 0.788 0.552 0.376 0.560 0.508 0.718 0.631 0.546  

BMS1315 0.534 0.585 0.508 0.585 0.442 0.464 0.570 0.222 0.675 0.429 0.637  

BMS1355 0.545 0.502 0.553 0.627 0.562 0.335 0.584 0.275 0.710 0.582 0.355  

BMS1675 0.523 0.652 0.240 0.378 0.726 0.682 0.628 0.329 0.582 0.553 0.438  

BMS1716 0.714 0.674 0.530 0.670 0.721 0.631 0.545 0.000 0.631 0.602 0.405  

BMS1747 0.535 0.563 0.722 0.510 0.629 0.388 0.520 0.477 0.549 0.616 0.710  

BMS1857 0.793 0.741 0.727 0.824 0.741 0.729 0.787 0.415 0.803 0.659 0.804  
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HE BNP FN GT NBR NS TRN TRS TSBH WC WM YNP  

BMS1862 0.686 0.619 0.626 0.793 0.775 0.239 0.594 0.426 0.716 0.844 0.801  

BMS2258 0.762 0.755 0.807 0.732 0.740 0.677 0.757 0.690 0.798 0.742 0.750  

BMS2639 0.751 0.818 0.669 0.709 0.821 0.573 0.755 0.604 0.712 0.767 0.653  

BMS410 0.328 0.564 0.492 0.557 0.618 0.499 0.439 0.598 0.554 0.703 0.644  

BMS510 0.637 0.726 0.690 0.701 0.715 0.593 0.670 0.393 0.567 0.368 0.690  

BMS527 0.654 0.753 0.677 0.686 0.793 0.671 0.649 0.582 0.607 0.691 0.682  

BMS528 0.650 0.618 0.729 0.637 0.732 0.654 0.638 0.333 0.661 0.709 0.747  

BMS601 0.444 0.505 0.595 0.720 0.550 0.497 0.414 0.290 0.739 0.560 0.759  

BMS812 0.658 0.689 0.277 0.761 0.653 0.735 0.665 0.000 0.675 0.688 0.659  

BMS911 0.582 0.576 0.526 0.709 0.640 0.488 0.533 0.000 0.514 0.628 0.492  

BMS941 0.063 0.132 0.075 0.517 0.367 0.000 0.120 0.221 0.607 0.508 0.487  

HUJ246 0.700 0.741 0.553 0.561 0.627 0.741 0.678 0.636 0.433 0.516 0.548  

IL4 0.730 0.756 0.829 0.771 0.822 0.658 0.698 0.073 0.786 0.700 0.758  

ILSTS102 0.704 0.640 0.622 0.463 0.608 0.737 0.775 0.258 0.626 0.640 0.637  

INRA037 0.477 0.530 0.575 0.545 0.665 0.658 0.743 0.446 0.610 0.721 0.614  

INRA133 0.392 0.413 0.411 0.561 0.570 0.367 0.325 0.342 0.570 0.753 0.418  

INRA189 - - - - - - - - - - -  

INRA194 0.541 0.494 0.545 0.526 0.513 0.473 0.516 0.460 0.492 0.476 0.655  

RM372 0.757 0.771 0.657 0.602 0.675 0.749 0.779 0.389 0.802 0.479 0.729  

TGLA122 0.622 0.669 0.610 0.568 0.660 0.515 0.545 0.646 0.632 0.272 0.763  

TGLA44 0.656 0.579 0.687 0.692 0.659 0.672 0.588 0.025 0.660 0.210 0.686  

TGLA53 0.647 0.628 0.494 0.730 0.644 0.632 0.658 0.596 0.582 0.721 0.518  

URB011 0.612 0.713 0.658 0.662 0.720 0.613 0.710 0.366 0.776 0.619 0.761  

HE Average 0.574 0.590 0.560 0.647 0.631 0.513 0.574 0.373 0.653 0.599 0.627  
HE Std Dev 0.158 0.161 0.177 0.106 0.128 0.210 0.178 0.215 0.114 0.138 0.135  
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APPENDIX D 

COMPARATIVE ALLELE SIZES FOR ABI 377, 310, AND 3100 GENETIC 

ANALYZERS FOR 15 DISCRIMINATORY MICROSATELLITES 

 

Locus name and called allele sizes are listed on the first line, followed by 

designations for type of genetic analyzer.  Ranges for allele sizes are approximate and 

not available in every case.  Primers are assumed to be nontailed (nt) and identical to 

those sequences found at www.sol.marc.usda.gov, unless noted by the “tailed” 

designation.  See Chapter III for details. 

 

AGLA17 215    
377 215.64 - 215.88    
310 212.96 - 214.33    

3100 212.51 - 213.76    
      

AGLA293 218 220   
3100 217.67 - 218.65 219.92 - 220.17   

     
BM1314 137 157   
377 (nt) 136.68 - 136.93    
310 (nt) 134.49 - 135.30    
310 (tail) 140.66 - 141.93 161.29 - 161.62   
3100 (tail) 140.62 - 141.09 160.99 - 161.29   

     
BM4307 185 187 197  

3100 180.94 - 181.70 182.99 - 183.65 193.00 - 193.63  
     

BM4513 132 134   
377 131.71 - 132.00 133.66 - 133.95   
310 129.50 - 130.29 131.59 - 132.49   

3100 129.26 - 129.72 131.27 - 131.71   
     

BM7145 108 110 116  
377 106.80 - 107.17 108.82 - 109.16   
310 103.32 - 104.64 105.33 - 106.97 112.03 - 112.76  

3100 103.13 - 103.83 105.31 - 105.67 111.92 - 111.94  
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BMC3224 176    
377 (nt) 175.84 - 177.19    
310 (nt) 175.66 - 176.37    
310 (tail) 181.68 - 182.98    
3100 (tail) 181.54 - 182.05    

     
BMS2270 66 68 70 94 
377 (nt) 62.84 - 63.75 64.57 - 66.00 68.00 - 68.00  
310 (nt) 58.33 - 58.98 59.53 - 61.79 62.48 - 62.69 86.23 - 86.58 

3100 (tail) 72.09 - 73.57 74.31 - 74.68 76.14 - 76.59 100.3 - 100.38 
     
     

BMS4040 75    
377 73.18 - 74.41    
310 70.80 - 72.37    

3100 70.00 - 71.48    
     

CSSM36 158    
377 159.58 - 159.80    
310 157.62 - 159.24    

3100 157.17 - 157.95    
     

CSSM42 167 169 171  
377 169.06 - 169.33 170.96-171.22 172.84-173.21  
310 167.02 - 168.16 169.11-169.97 170.84-172.16  

3100 166.60 - 167.27 168.59-169.03 170.50-171.09  
     

RM185 92    
3100 91.57-92.56    

     
RM500 123    

377 122.75-123.00    
310 120.24-121.21    

3100 120.00-120.71    
     
     

SPS113 128 130 132  
377  130.06-130.35 132.07-132.32  
310 126.41-126.95 128.34-129.55 130.33-131.51  

3100  128.08-128.61 130.2-130.59  
     

TGLA227 72 73   
377 (nt) 72.69-72.94 73.67-74.41   
310 (nt) 70.47-70.78 71.31-73.80   
310 (tail) 76.48-77.02 77.55-78.38   
3100 (tail) 76.19-76.70 77.35-77.96   
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